Линейная зависимость и независимость векторов. Базис. Разложение вектора по базису.
Векторы называются линейно зависимыми, если существует такая линейная комбинация , при не равных нулю одновременно , т.е. . Если же только при = 0 выполняется , то векторы называются линейно независимыми.
Свойство 1. Если среди векторов есть нулевой вектор, то эти векторы линейно зависимы.
Свойство 2. Если к системе линейно зависимых векторов добавить один или несколько векторов, то полученная система тоже будет линейно зависима.
Свойство 3. Система векторов линейно зависима тогда и только тогда, когда один из векторов раскладывается в линейную комбинацию остальных векторов.
Свойство 4. Любые 2 коллинеарных вектора линейно зависимы и, наоборот, любые 2 линейно зависимые векторы коллинеарны.
Свойство 5. Любые 3 компланарных вектора линейно зависимы и, наоборот, любые 3 линейно зависимые векторы компланарны.
Свойство 6. Любые 4 вектора линейно зависимы.
В частном случае, когда векторы , . . ., - элементы нек-рого числового поля К,a k - подполе в К, возникает понятие линейной независимости ч и с е л. Л. н. чисел над полем рациональных чисел Q можно рассматривать также, как обобщение понятия иррациональности. Так, числа a и 1 линейно независимы тогда и только тогда, когда a иррационально.
Пусть L, Р и S – прямая, плоскость и пространство точек соответственно и . Тогда – векторные пространства векторов как направленных отрезков на прямой L, на плоскости Р и в пространстве S соответственно.
Определение. Базисом векторного пространства называется любой ненулевой вектор , т.е. любой ненулевой вектор коллинеарный прямой L: и .
Обозначение базиса : – базис .
Определение. Базисом векторного пространства называется любая упорядоченная пара неколлинеарных векторов пространства .
, где , – базис
Определение. Базисом векторного пространства называется любая упорядоченная тройка некомпланарных векторов (т.е. не лежащих в одной плоскости) пространства .
– базис
Замечание. Базис векторного пространства не может содержать нулевого вектора: в пространстве по определению, в пространстве два вектора будут коллинеарные, если хотя бы один из них нулевой, в пространстве три вектора будут компланарные, т.е будут лежать в одной плоскости, если хотя бы один из трех векторов будет нулевой.
Разложение вектора по базису.
Определение. Пусть – произвольный вектор, – произвольная система векторов. Если выполняется равенство ,то говорят, что вектор представлен в виде линейной комбинации данной системы векторов. Если данная система векторов является базисом векторного пространства, то равенство называется разложением вектора по базису . Коэффициенты линейной комбинации называются в этом случае координатами вектора относительно базиса .
Теорема. (О разложении вектора по базису.)
Любой вектор векторного пространства можно разложить по его базису и притом единственным способом.
Доказательство. 1) Пусть L произвольная прямая (или ось) и – базис . Возьмем произвольный вектор . Так как оба вектора и коллинеарные одной и той же прямой L, то . Воспользуемся теоремой о коллинеарности двух векторов. Так как , то найдется (существует) такое число , что и тем самым мы получили разложение вектора по базису векторного пространства .
Теперь докажем единственность такого разложения. Допустим противное. Пусть имеется два разложения вектора по базису векторного пространства :
и , где . Тогда и используя закон дистрибутивности, получаем:
.
Так как , то из последнего равенства следует, что , ч.т.д.
2) Пусть теперь Р произвольная плоскость и – базис . Пусть произвольный вектор этой плоскости. Отложим все три вектора от какой-нибудь одной точки этой плоскости. Построим 4 прямых. Проведем прямую , на которой лежит вектор , прямую , на которой лежит вектор . Через конец вектора проведем прямую параллельную вектору и прямую параллельную вектору . Эти 4 прямые высекают параллелограмм. См. ниже рис. 3. По правилу параллелограмма , и , , – базис , – базис .Теперь, по уже доказанному в первой части этого доказательства, существуют такие числа , что и . Отсюда получаем:
и возможность разложения по базису доказана.
Теперь докажем единственность разложения по базису. Допустим противное. Пусть имеется два разложения вектора по базису векторного пространства : и . Получаем равенство , откуда следует . Если , то , а т.к. , то и коэффициенты разложения равны: , . Пусть теперь . Тогда , где . По теореме о коллинеарности двух векторов отсюда следует, что . Получили противоречие условию теоремы. Следовательно, и , ч.т.д.
3) Пусть – базис и пусть произвольный вектор. Проведем следующие построения.
Отложим все три базисных вектора и вектор от одной точки и построим 6 плоскостей: плоскость, в которой лежат базисные векторы , плоскость и плоскость ; далее через конец вектора проведем три плоскости параллельно только что построенным трем плоскостям. Эти 6 плоскостей высекают параллелепипед:
По правилу сложения векторов получаем равенство: .
По построению . Отсюда, по теореме о коллинеарности двух векторов, следует, что существует число , такое что . Аналогично, и , где . Теперь, подставляя эти равенства в, получаем
и возможность разложения по базису доказана.
Докажем единственность такого разложения. Допустим противное. Пусть имеется два разложения вектора по базису :
и . Тогда .
Заметим, что по условию векторы некомпланарные, следовательно, они попарно неколлинеарные.
Возможны два случая: или .
а) Пусть , тогда из равенства следует: .
Из равенства следует, что вектор раскладывается по базису , т.е. вектор лежит в плоскости векторов и, следовательно, векторы компланарные, что противоречит условию.
б) Остается случай , т.е. . Тогда из равенства получаем или . Так как – базис пространства векторов лежащих в плоскости, а мы уже доказали единственность разложения по базису векторов плоскости, то из равенства (5) следует, что и , ч.т.д.