К исследованию поведения функций

 
  к исследованию поведения функций - student2.ru

к исследованию поведения функций - student2.ru к исследованию поведения функций - student2.ru

 
  к исследованию поведения функций - student2.ru

Р Г Г М У

Санкт-Петербург

Одобрено Научно-методическим советом РГГМУ

УДК 51

Веретенников В. Н. Учебно-методическое пособие для выполнения индивидуального задания. Применение дифференциального исчисления к исследованию поведения функций. – СПб.: Изд. РГГМУ. 2007. – 36 с.

Активизация познавательной деятельности студентов, выработка у них способности самостоятельно решать достаточно сложные проблемы может быть достигнута при такой организации учебного процесса, когда каждому студенту выдаются индивидуальные домашние задания (ИДЗ) с обязательным последующим контролем их выполнения и выставлением оценок.

Предлагаемое пособие адресовано преподавателям и студентам и предназначено для проведения практических занятий и самостоятельных (контрольных) работ в аудитории и выдачи ИДЗ.

© Веретенников В. Н.

© Российский государственный гидрометеорологический университет (РГГМУ), 2007.

ПРЕДИСЛОВИЕ

"Математика" является не только мощным средством решения прикладных гидрометеорологических задач, но также и элементом общей культуры. Именно в рамках математического образования студент получает навыки творческого подхода к решению интеллектуальных проблем, точному пониманию средств возможностей решения проблем, знакомится с современными информационными технологиями.

Целью математического образования является:

1. Воспитание достаточно высокой математической культуры.

2. Привитие навыков современных видов математического мышления.

3. Привитие навыков использования математических методов и основ математического моделирования в практической деятельности.

Воспитание у студентов математической культуры включает в себя ясное понимание необходимости математической составляющей в общей подготовке студента. Он должен выработать представление о роли и месте математики в современной цивилизации и в мировой культуре, уметь логически мыслить, оперировать с абстрактными объектами и быть корректным в употреблении математических понятий и символов для выражения количественных и качественных отношений.

В пособии приведены основные теоретические сведения, отражающие базисные понятия по разделу "Применение дифференциального исчисления к исследованию поведения функций"; базисные методы решения основных задач; приведен перечень знаний, умений и навыков, которыми должен владеть студент; указана используемая литература.

ПРИМЕНЕНИЕ ДИФФЕРЕНЦИАЛЬНОГО ИСЧИСЛЕНИЯ

К ИССЛЕДОВАНИЮ ПОВЕДЕНИЯ ФУНКЦИЙ

Одной из важнейших прикладных задач дифференциального исчисления является разработка общих приемов исследования поведения функций.

Основные теоретические сведения

Наши рекомендации