Эхолоты и принцип их работы.

Принцип работы современных эхолотов основан на измерении времени прохождения в воде импульса ультразвуковых колебаний от судна до дна моря и обратно.

Принципиально эхолоты могут отличаться лишь способом определения и регистрации промежутков или функций этого времени. В эхолотах отечественного производства применяется; а) метод среднего значения анодного тока тиратрона или электронной лампы, пропорционального глубине, и б) метод линейной развёртки времени.

Первый метод применяется в эхолотах для измерения малых глубин ("Река", РЭЛ-6). Второй метод применяется во всех морских навигационных эхолотах типа НЭЛ, в связи с тем, что он является наиболее надёжным, простым и обеспечивающим автоматическую запись глубин достаточно простыми конструктивными средствами.

Гидроакустические антенны эхолотов подразделяются на пьезоэлектрические и магнитострикционные.

Пьезоэлектрические антенны имеют К.П.Д. до 0,6 - 0,7 и позволяют преобразовывать колебания частотой до сотен килогерц. Магнитострикционные антенны имеют К.П.Д. порядка 0,3 - 0,5 и удовлетворительно работают на частотах до 30 - 40 КГц.

В эхолотах последних разработок используется импульсный способ возбуждения, обеспечивающий большую точность измерения малых глубин.

В целях безопасности мореплавания последние навигационные эхолоты включают устройство сигнализирующие о выходе судна на заданную глубину. (НЭЛ-5, НЭЛ-10).

Эхолот НЭЛ-М2 устанавливают на крупнотоннажных судах; эхолот НЭЛ-М3Б на судах всех классов, включая быстроходные катера, взрывоопасные суда и ледоколы.

Эхолот НЭЛ-М2 в отличие от эхолота НЭЛ-М3Б и всех предшествующих навигационных эхолотов является двухчастотным, т.е. имеет две рабочие частоты - 12 КГц и 169 КГц. Частота 169 КГц используется для измерения глубин до 400 м, частота 12 КГц - от 400 до 3000 м.

Переход с одной частоты на другую происходит автоматически с переключением диапазонов измерения.

Погрешности эхолотов обусловленные внешними условиями.

  • Они возникают при отклонении действительной скорости распространения звука от расчётной. Скорость раслространения звука в морской воде зависит от температуры, солёности и гидростатического давления. При повышении температуры на 1° скорость уменьшается на 4 м/с, при увеличении солёности на 1 % возрастает на 1 м/с, при увеличении глубины на 10 м повышается на 0,2 м/с. При расчётной скорости 1500 м/с ошибка ΔН не превышает 3,5 % измеряемой глубины для любой точки Мирового океана.
  • Влияние качки. При качке судна ось антенны отклоняется от вертикали. В результате эхолот показывает глубину несколько больше действительной. Кроме того, когда угол крена превышает половину угла диаграммы направленности антенны, показания эхолота могут пропадать. При плавании на волнении, особенно в балласте, судно носовой частью захватывает атмосферный воздух. Пузырьки воздуха, попавшие под корпус судна, вызывают сильное рассеяние, отражение и поглощение звуковой энергии, создавая помехи и даже длительные перерывы в индикации глубины.
  • Влияние структуры грунта. Наиболее чёткая индикация получается при твёрдом грунте (каменная плита, плотный песок и т.п.). Однако в отдельных случаях при малых глубинах индикация от каменной плиты может пропадать ввиду зеркального отражения эхоимпульса и непопадания его на вибратор-приёмник. При илистом грунте индикация от верхней границы ила может не быть, а появится индикация от подстилающего твёрдого грунта. Может появиться и двойная индикация: от верхней границы ила и от подстилающего грунта. Двойная индикация хорошо просматривается на самописце.


Гирокомпасы с корректируемым чувствительным элементом. Влияние маневрирования судна на показания ГК. Способы снижения инерционной девиации. Основные достоинства корректируемых гирокомпасов нового поколения.

Гироком­пасом с косвенным управлением- представляет собой астатический гироскоп, управление движением которого осуществляется с помощью датчиков моментов по командам индикатора горизонта, вырабатывающего сиг­нал, пропорциональный углу отклонения главной оси гироскопа от плоскости горизонта.

В гирокомпасах с непосредственным управлением один и тот же элемент устройства — физиче­ский маятник — воспринимает отклонение главной оси чувствитель­ного элемента относительно плоскости горизонта и непосредственно налагает момент, пропорциональный этому отклонению.

В гирокомпа­сах с косвенным управлением указанные функции распределены меж­ду пространственно разделенными устройствами: индикатором гори­зонта и датчиками момента.

В гирокомпасах с косвенным управлением в качестве ЧЭ применяют астатические гироскопы, а управляющие моменты формируются косвенным путем по сигналам индикатора горизонта при помощи системы управления движением гироскопа. Индикатор горизонта так укреплен на гирокомпасе, что измеряет угол наклона главной оси ЧЭ к плоскости горизонта.

Если на чувствительный элемент гирокомпаса, помимо упомянутых управляющих моментов, с помощью этой системы действуют дополнительные корректирующие моменты, которые формируются по сигналам вычислительного устройства на основании внешней информации о широте и скорости судна и обеспечивают нулевые значения координат положения равновесия при стационарном (установившемся) движении объекта, то гирокомпас называется корректируемым.

Известно несколько способов снижения инерционнойдевиации, которые или предусмотрены в конструкции ГАК, или выполняются по усмотрению судоводителя, принимающего решение в зависимости от условий плавания.

1.Увеличение постоянной времени индикатора горизонта. Снижение девиации тем больше, чем больше τ. Как уже отмечалось, τ характеризует быстроту реакции ИГ на действие приложенных к маятнику сил. Этот способ эффективен на быстроходных судах, где маневры по времени короткие.

2.Ограничение угла отклонения маятника индикатора горизонта. В ИГ ГАК “Вега” этот угол составляет ± 1˚ и ограничен механическими упорами. При маневре высокой интенсивности маятник доходит до упора, после чего его сигнал не возрастает, следовательно, не возрастает и маятниковый мо- мент, вызывающий инерционную девиацию.

3. Перевод прибора в режим ГА. В этом режиме ИГ отключен от управ- ления ДМУ, маятниковый момент КУХ отсутствует

27.(+19) Средства автоматической радиолокационной прокладки (САРП). Первичная и вторичная обработка. Принципы захвата и автосопровождения целей

Устройство отображения первичной и вторичной информации состоит из канала разверток (КР), канала управления,контроля и индикации (КУКИ), монитора и цифровых табло

В большинстве САРП на мониторе устройства отображения совмещается отображение первичной информации об окружающей обстановке и вторичной – графической и цифровой.

На цифровых табло (ЦТ), как правило, отображается цифровая информация.

Канал разверток (КР) формирует напряжения для отображения первичной информации, а также напряжения для отображения вторичной графической и цифровой информации.

Канал управления, контроля и индикации (КУКИ) предназначен для формирования сигналов управления работой системы и индикации положения органов управления, сигналов контроля, формирования команд управления и др.

КУКИ позволяет вести обмен информацией между оператором и САРП.

С помощью органов управления и меню можно запросить нужную информацию: цифровой процессор выдает запрашиваемую информацию на экран монитора и цифровое табло.

Ручной и автоматический режимы захвата целейВ режиме автоматического захвата в процессор поступают данные в зоне поиска, устанавливаемой оператором на экране индикатора САРП, в результате чего цели в зоне поиска отбираются для автосопровождения без участия судоводителя.

В режиме ручного захвата производится ручной отбор целей для автосопровождения как в зоне поиска, так и вне ее. Независимо от выбранного режима захвата (автоматического или ручного), автосопровождение целей будет продолжаться до тех пор, пока судоводитель не снимет цель с сопровождения или она не будет потеряна системой.

Хотя автоматический захват и снимает часть нагрузки с судоводителя, он может привести к избытку векторной информации на экране индикатора при большом количестве автосопровождаемых целей. В условиях интенсивного движения это затрудняет определение приоритетных параметров.

В режиме ручного захвата, несмотря на потерю времени, необходимого для захвата целей и сброса целей с сопровождения, будут отобраны именно те цели, которые действительно представляют интерес для судоводителя.

Именно наличие ручного захвата в САРП требует ИМО, хотя и допускает использование автоматического захвата, реализация которого в современных системах не представляеттехнических трудностей.

Ручной захват целей выполняется в пределах от 0,5 до 24миль.

Автоматический захват производится в зоне поиска, параметры которой задаются оператором. Количество сопровождаемых целей зависит от типа САРП и примерно составляет в режиме ручного захвата – 20; в режиме автозахвата > 50.

28.(+26) Корректируемые гироскопические курсоуказатели. Режим гироазимута. Варианты использования этого режима. Погрешность курсоуказателя при работе в режиме гироазимута.

Гироазимут - навигационное гироскопическое устройство, предназначенное
- для сохранения заданного направления в горизонтальной плоскости, по которому первоначально ориентирована главная ось гироскопа;

в качестве чувствительного элемента (ЧЭ) используется астатический гироскоп

в качестве ЧЭ в Веге-М- трехстепенной поплавковый гироскоп
а для придания ему компасных свойств применяются датчики моментов,
4. действуют по осям гироскопа в зависимости от угла отклонения его главной оси от плоскости горизонта.
Угол отклонения главной оси гироскопа измеряется физическим маятником, установленным на камере гироскопа связь которого с Землей осуществляется посредством индикатора горизонта

наложение управляющих моментов на гироскоп производится через торсионы при помощи следящих приводов.
гирокомпаса и гироазимута — гироскопа направления.
Для работы курсоуказателя в гироазимуте нужно что бы ось кинетического момента гиросферы была всегда в горизонте, а по обеим осям прецессии гиросферы прикладывались корректирующие моменты для компенсации отклонения гиросферы.

это режим корректируемого гирокомпаса.
В этом режиме главная ось чувствительного элемента ориентирована вдоль полуденной линии N—S и, располагается в плоскости истинного меридиана,
по показаниям гирокомпаса определяют истинный курс судна.
Дополнительный режим — это режим гироазимута. В этом случае ось чувствительного элемента сохраняет то азимутальное направление, которое она имела в момент перевода прибора из режима гирокомпаса в режим гироазимута.
Способ подвеса гиросферы — жидкостноторсионный.

В качестве указателя направления в высоких широтах применяется гироазимут (ГА). Этот гироскопический прибор, в отличие от гирокомпаса, предназначен для хранения заданного в пространстве направления. Ось чувствительного элемента ГА не находится точно в плоскости истинного меридиана и с течением времени уходит от этой плоскости. Этот процесс называется дрейфом гироазимута, поэтому поправка ГА меняется со временем.

Основным недостатком гироазимута является то, что он не обладает направляющим моментом, способным отыскивать плоскость истинного меридиана, но в высоких широтах ГА обеспечивает более устойчивое курсоуказание, чем гирокомпас.

Наши рекомендации