Сущность и категориальный аппарат системного подхода
Под системным подходом понимается способ мышленияпо отношению к организации и управлению. Системный подход используется в тех случаях, когда стремятся исследовать объект с разных сторон, комплексно. Наиболее распространенным направлением системных исследований считается системный анализ, под которым понимают методологию решения сложных задач и проблем, основанную на концепциях, разработанных в рамках теории систем. Системный анализ определяется и как «приложение системных концепций к функциям управления, связанным с планированием», или даже со стратегическим планированием и целевой стадией планирования.
Термин «системный анализ» впервые появился в 1948 г. в работах корпорации RAND в связи с задачами внешнего управления, а в отечественной литературе широкое распространение получил после перевода книги С. Оптнера.
Во многих работах системный анализ развивается применительно к проблеме планирования и управления в период усиления внимания к программно-целевым принципам. В планировании термин «системный анализ» был практически неотделим от терминов «целеобразование», «программно-целевое планирование». Для исследования этих вопросов пока еще почти нет формализованных средств: имеются методики, обеспечивающие полноту расчленения системы на части, но почти нет работ, в которых исследовалось бы, как при расчленении на части не утратить целого.
Понимая недостаточность инеобходимость разработки средств декомпозиции и сохранения целостности, в последнее время часто возвращаются к определению системного анализа как формализованного здравого смысла, к пониманию системного анализа как искусства. Системный подход основывается на принципах:
1) единства- совместное рассмотрение системы как единого целого и как совокупности частей;
2) развития- учет изменяемости системы, ее способности к развитию, накапливанию информации с учетом динамики окружающей среды;
3) глобальной цели - ответственность за выбор глобальной цели. Оптимум подсистем не является оптимумом всей системы;
4) функциональности- совместное рассмотрение структуры системы и функций с приоритетом функций над структурой;
5) децентрализации- сочетание децентрализации и централизации;
6) иерархии- учет соподчинения и ранжирования частей;
7) неопределенности- учет вероятностного наступления события;
8) организованности - степень выполнения решений и выводов.
Сущность системного подхода формулировалась многими авторами. В развернутом виде она сформулирована В.Г. Афанасьевым, определившим ряд взаимосвязанных аспектов, которые в совокупности и единстве составляют системный подход:
• системно-элементный, отвечающий на вопрос, из чего (каких компонентов) образована система;
• системно-структурный, раскрывающий внутреннюю организацию системы, способ взаимодействия образующих ее компонентов;
• системно-функциональный, показывающий, какие функции выполняет система и образующие ее компоненты;
• системно-коммуникационный, раскрывающий взаимосвязь данной системы с другими как по горизонтали, так и по вертикали;
• системно-интегративный, показывающий механизмы, факторы сохранения, совершенствования и развития системы;
• системно-исторический, отвечающий на вопрос, как, каким образом возникла система, какие этапы в своем развитии проходила, каковы ее исторические перспективы.
В основе получаемых с помощью системного анализа результатов лежит совокупность понятий, центральное место в которой занимает термин «система». Один из основоположников системного подхода - Р.Л. Акофф - считал, что термин «система» используется для обозначения обширного класса явлений. Мы говорим, например, о философских системах, системах чисел, системах связи, системах управления, системах образования, системах оружия. Некоторые из них являются концептуальными конструкциями, другие - физическими сущностями. Первоначально в широком смысле и не очень точно систему можно определить как любую сущность, концептуальную или физическую, которая состоит из взаимозависимых частей.
А.И. Уемов предложил характеризовать систему через системообразующее отношение, интерпретируемое на некотором множестве элементов.
При всей важности этого понятия для современной науки в настоящее время не существует единого общепринятого определения системы. Под системойобычно понимают наличие множества объектов с набором связей между ними и их свойствами. Термин система охватывает очень широкий спектр понятий. Например, существуют горные системы, системы рек и солнечная система как часть нашего физического окружения. При такой трактовке системами являются: машина, собранная из деталей и узлов; живой организм, образуемый совокупностью клеток; производственная система, объединяющая и связывающая в единое целое множество технологических процессов,, коллективы людей, ресурсы и пр. При этом объекты (части системы) функционируют во времени как единое целое. Понятие система связывается с такими категориями, как план, метод, порядок, получающими широкое распространение в различных сферах человеческой деятельности.
Понятие «систематизированное» противоположно понятию «хаотическое». Хаотической ситуацией можно назвать такую, где «все зависит от всего другого», но логика взаимосвязей непонятна. Так как двумя основными целями исследования в любой области являются объяснение и предсказание, то такое положение недопустимо. Поэтому существуют веские мотивы дляразвития областей знания, которые можно объединить в комплексное целое, части которого оказываются взаимосвязанными, В последнее время в определение системы начинают включать цели, которые она должна достичь в процессе своего функционирования, и наблюдателя - лицо, представляющее объект или процесс в виде системы. Следует отметить, что на разных этапах представления объектов в виде систем можно пользоваться разными определениями, учитывая конкретные особенности проблемы, ради решения которой создается система.
Объект (элемент).Под элементомпринято понимать простейшую неделимую часть системы. В общем виде имеется неограниченное множество таких частей, способ выделения которых зависит от формулировки целей анализа и построения системы. Если в качестве элемента системы приняты понятия, связанные между собой определенными отношениями, то имеем дело с символическими (абстрактными) системами. Примером таких систем служат языки, системы исчисления, алгоритмы. Реальные (вещественные, физические) системы включают в себя, по меньшей мере два физических объекта. Создание реальной системы означает, что она синтезируется из некоторых компонентов в следующем порядке: замысел системы, анализ и выделение компонентов, конструирование, компоненты, объединение компонентов в единое целое.
Подсистемы.Система может быть расчленена на элементы не сразу, а путем последовательного разделения на подсистемы. Подсистемы сами являются системами и к ним, следовательно, относится все, что сказано о системе, в том числе и о ее целостности. Этим подсистема отличается от простой совокупности элементов, не объединенных целью и свойством целостности.
Структуры.Система может быть представлена простым перечислением элементов, либо заданием свойства принадлежности к некоторому множеству, либо последовательным расчленением на подсистемы, компоненты, элементы с взаимосвязями между ними, В последнем случае вводится понятие «структура», которое отражает наиболее существенные взаимосвязи между элементами и их группами. Данные взаимосвязи обеспечивают существование системы и ее основных свойств. Структурные свойства обладают относительной независимостью от элементов и могут выступать как инвариант при переходе от одной системы к другой, переноси закономерности, выявленные в одной из них, на другую (даже если эти системы имеют разную физическую природу). Структура может быть представлена графическим отображением, теоретико-множественным отношением, в виде матриц. Вид представления системы зависит от цели отображения.
Функция.Это деятельность, работа, внешнее проявление свойств какого-либо объекта в данной системе отношений. Функции классифицируются по различным признакам в зависимости от целей исследования.
Свойства. Это качества параметров объектов, т.е. внешние проявления того способа, с помощью которого получают знания об объекте. Свойства дают возможность описывать объекты системы количественно, выражал их в единицах, имеющих определенную размерность. При этом они могут изменяться в результате функционирования системы.
Связь.Это понятие входит в любое определение, системы и обеспечивает возникновение и сохранение структуры и целостных свойств системы, характеризует как ее строение, так и функционирование. Связи характеризуются направлением (направленные — ненаправленные прямые и обратные), силой (слабые — сильные), характером (связи подчинения, порождения равноправия управления) предполагается, что связи существуют между всеми системными элементами и подсистемами.
Состояние.Мгновенная характеристика (остановка в развитии) системы, которая обеспечивает определение знания свойств системы в конкретный момент времени. Состояние определяется либо через входные воздействия и выходные результаты, либо через общесистемные свойства. Статическая система - это система об одном состоянии.динамическая система - система с множеством состояний, в которой с течением времени происходит переход из одного состояния в другое.
Поведение. Изменение состояния системы, исходом которого является некоторый результат, называют поведением системы. В основном термин поведение относят к человеко-машинным или организационным системам. Для технических систем обычно говорят о процессах в системе.
Равновесие -данное понятие определяется, как способность системы в отсутствии внешних возмущений сохранять свое состояние неопределенно длительное время.
Устойчивость.Под устойчивостью понимается способность системы возвращаться в состояние равновесия после воздействия внешних возмущений. Состояние равновесия, в которое система способна возвращаться, называется устойчивым состоянием равновесия. Для технических систем понятие устойчивости может быть определено строго. Для человеко-машинных и организационных систем это понятие в значительной степени определяется качественно.
Развитие.Под развитием будем понимать последовательное изменение состояний системы от некоторого зафиксированного момента времени. Характер этих изменений определяется процессами, идущими в системе, взаимодействием с окружающей средой. Изменения могут быть монотонными скачкообразными, с повторением уже пройденных состояний (циклическое развитие).
Цель.Это одно из ключевых понятий системного анализа, лежащее в основе развития системы и обеспечивающее ее целенаправленность (целесообразность) Цель можно определить как желаемый результат деятельности, достижимый в пределах некоторого интервала времени. Цель становится задачей, стоящей перед системой, если указан срок ее достижения и конкретизированы количественные характеристики желаемого результата. Цель достигается в результате решения задачи или ряда задач, если исходная цель может быть подвергнута разделению на некоторую совокупность более простых (частных) подзадач. Цель - это идеальный результат деятельности в будущем определяет то, ради чего создают систему. Системы имеют также определенные закономерности:
1. Целостность и обособленность. Если каждая часть так соотносится с каждой другой частью, что изменения в некоторой части вызывают изменения во всех других частях и в системе целом, то говорят, что система ведет себя как целостность или как некоторое связанное образование. Если же этого не происходит, то такое поведение называется обособленным. Если в процессе развития изменения в системе приводят к постепенному переходу от целостности к обособленности, то система подвержена прогрессирующей изоляции.
2. Коммуникативность.Большинство систем существуют не в изоляции, а связаны множеством коммуникаций (отсюда - коммуникативность) с внешней средой.
3. Иерархичность.Под иерархией понимается последовательная декомпозиция исходной системы на ряд уровней с установлением отношения подчиненности нижележащих уровней вышележащим.
В классификации систем целесообразно исходить из двух четких критериев. Первым,бесспорно существенным, критериемможно считать степень сложности системы. Наименее сложные системы могут быть названы простыми динамическими системами.Системы, не являющиеся простыми и отличающиеся разветвленной структурой и большим разнообразием внутренних связей, называются сложными системами,поддающимися описанию.Сложнойявляется система,обладающая определенным набором свойств, включающих:
1) неоднородностьи большое число элементов;
2) эмердженткость- несводимость свойств отдельных элементов и свойств системы в целом;
3) иерархия- наличие нескольких уровней и способов достижения целей соответствующих уровней, что порождает внутри уровневые и междууровневые конфликты в системе;
4) агрегирование- объединение нескольких параметров системы в параметры более высокого уровня;
5) много функциональность - это способность большой системы к реализации некоторого множества функций на заданной структуре, которая проявляется в свойствах гибкости, адаптации, живучести;
6) гибкость- это свойство изменять цель функционирования в зависимости от условий функционирования или состояния подсистем;
7) адаптация- это изменение целей функционирования при изменении условий функционирования;
8) надежность- это свойство системы реализовывать заданные функции в течение определенного периода времени с заданными параметрами качества;
9) безопасность- это способность системы не наносить недопустимые воздействия техническим объектам, персоналу, окружающей среде при своем функционировании;
10) стойкость- это свойство системы выполнять свои функции при выходе параметров внешней среды за определенные ограничения или допуски (для механических систем говорят о запасе прочности);
11) уязвимость – способность получать повреждения при воздействии внешних и (или) внутренних поражающих факторов;
12)живучесть- это способность изменять цели функционирования при отказе и (или) повреждении элементов системы.
Наконец, есть системы настолько сложного вида, что хотя их и можно называть сложными, но точно и подробно описать их уже нельзя. Эти системы называются очень сложными. Вторым существенным критериемявляется различие между детерминированнымии вероятностнымисистемами. Детерминированной системойследует считать систему, в которой составные части взаимодействуют точно предвидимым образом. При исследовании детерминированной системы никогда не возникает никакой неопределенности. Если задано предыдущее состояние системы и известна программа переработки информации, то, определив динамическую структуру системы, всегда можно предсказать ее последующее состояние. Напротив, для вероятностной системынельзя сделать точного детального предсказания. Такую систему можно тщательно исследовать и установить с большой степенью вероятности, как она будет вести себя в любых заданных условиях. Однако система все-таки остается неопределенной, и любое предвидение относительно ее поведения никогда не может выйти из логических рамок вероятностных категорий. Чрезвычайно важно правильно оценить различия между детерминированными и вероятностными системами. Подлинно научное обоснование этого различия отсутствует.
Приняв два критерия классификации, в соответствии с которыми разделены все системы сначала по первому критерию на три класса (простые, сложные и очень сложные), а затем по второму — на два (детерминированные и вероятностные), в итоге получена система классификации, состоящая из шести категорий. В общем виде каждая категория имеет свои особенности. Простой детерминированной системойявляется система из небольшого числа элементов, имеющая небольшое число внутренних связей, которая характеризуется вполне определенным динамическим поведением. Любая игра при условии, что она соответствующим образом определена,может принадлежать к системам этого класса до той поры, пока не началась реальная игра. Эта система становится вероятностной в том случае, если начинается реальная игра. Искусство игроков, конкретные условия вносят настолько много не поддающихся учету факторов, что система становится вероятностной. Столь же осторожный подход требуется при оценке третьего примера простых детерминированных систем, который можно взять из сферы промышленного производства. К классу простых детерминированных систем можно отнести систему размещения станков в механическом цехе, которую можно оценить исходя из требования обеспечения движения материалов по определенным маршрутам. В рамках такой постановки задачи можно минимизировать расстояния, которые должны проходить материалы в процессе обработки. Однако если нужно исследовать реальные процессы, происходящие при движении материалов, то система сразу становится вероятностной. Этот пример аналогичен примеру игры в бильярд. Абстрактная система является детерминированной, но она теряет это свойство, как только на систему накладываются влияния реальной действительности.
Система формирует и проявляет свои свойства только в процессе функционирования и взаимодействия с внешней средой. Система реагирует на воздействия внешней среды, развивается под этими воздействиями, но при этом сохраняет качественную определенность и свойства, обеспечивающие се относительную устойчивость и адаптивность функционирования. Без взаимодействия с внешней средой открытая система не может функционировать. При рассмотрении системы как «черного ящика» сначала анализируются и формулируются параметры выхода системы, затем определяется воздействие внешней среды на систему, требования к ее входу, анализируются параметры канала обратной связи и в последнюю очередь — параметры процесса в системе. При установлении взаимосвязей и взаимодействия системы с внешней средой следует строить «черный ящик» и формулировать сначала параметры «выхода», затем определить воздействие факторов макро- и микросреды, требования к «входу», каналы обратной связи и в последнюю очередь проектировать параметры процесса в системе.
Степень самостоятельности характеризует число связей системы с внешней средой в среднем на один ее компонент или иной параметр; скорость отмирания, деления или объединения компонентов системы без вмешательства внешней среды.
Число связей системы с внешней средой должно быть минимальным, но достаточным для нормального функционирования системы. Чрезмерный рост числа связей усложняет управляемость системы, а их недостаточность снижает качество управления. Приэтом должна быть обеспечена необходимая самостоятельностькомпонентов системы. Для обеспечения мобильности и адаптивности системы она должна иметь возможность быстрого изменения своей структуры.
Открытостьотражает интенсивность обмена информацией или ресурсами системы с внешней средой; число систем внешней среды, взаимодействующих с данной системой; степень влияния других систем на данную систему.
Вусловиях развития глобальной конкуренции и международной интеграции следует стремиться к росту степени открытостисистемы при условии обеспечения ее экономической, технической, информационной, правовой безопасности.
Степень совместимости системы с другими системами внешней среды (макро- и микросреды, инфраструктуры региона) определяется по ряду направлений: правовому, информационному, научно-методическому и ресурсному обеспечению. Инструментом обеспечения совместимости является стандартизация всех объектов на всех уровнях иерархии управления Для построения, функционирования и развития системы в условиях расширения международной интеграции и кооперирования следует добиваться ее совместимости с другими системами по правовому, информационному, научно-методическому и ресурсному обеспечению на основе страновой и международной стандартизации. В настоящее время введены в действие международные стандарты по системам мер и измерений, системам качества, сертификации, аудиту, финансовой отчетности и статистике и др.
Выделяют также свойства, характеризующую методологию целеполагания системы.
Целенаправленностьозначает обязательность построения дерева целей социально-экономических и производственных систем, дерева показателей эффективности технических систем и др. (Например, критерием функционирования организации является максимизация вновь созданной стоимости как суммы фонда оплаты труда персонала и прибыли (при условии соблюдения законодательства) на основе обеспечения конкурентоспособности товаров и организации.) Для определения стратегии функционирования и развития системы следует строить дерево целей. Например, показателем нулевого уровня дерева целей системы критерием функционирования — может быть максимизация вновь созданной стоимости. Целями первого уровня могут быть повышение качества конкретных товаров, ресурсосбережение, расширение рынка сбыта товаров, повышение качества обслуживания товаров, организационно техническое развитие производства охрана природной среды. Навтором и третьем уровнях иерархии целей показатели вышестоящего уровня подразделяются на более частные показатели.
Наследственность характеризует закономерность передачи доминантных (преобладающих, наиболее сильных) и рецессивных признаков на отдельных этапах развития (эволюции) от старого поколения системы к новому. Выделение доминантных признаков системы позволяет повысить обоснованность направлений ее развития. Доминантные и рецессивные признаки, по сути, являются объективными. Субъективность процесса управления этими признаками проявляется в их исследовании, отборе доминантных признаков системы и инвестировании в их развитие. Это сложная комплексная задача. Для повышения обоснованности инвестиций в инновационные и другие проекты следует изучать доминантные и рецессивные признаки системы и вкладывать в развитие первых, наиболее эффективных.
Приоритет качества также играет важную роль.Практика показывает, что технические, социально-экономические системы, которые из всех ров функционирования и развития отдают приоритет качеству различных объектов (подсистем). Из всех целей верхнего уровня приоритет следует отдавать качеству любых объектов управления как основе удовлетворения требований рынка, экономии ресурсов в глобальном масштабе, обеспечения безопасности, повышения качества жизни населения.Сначала должны удовлетворяться интересы (достигаться цели) системы более высокого (глобального) уровня, а затем - ее подсистем. При формировании миссии и целей системы следует отдавать приоритет интересам системы более высокого уровня как гарантии решения глобальных проблем.
Надежность системы (например, организации) характеризуется:
а) бесперебойностью функционирования системы при выходе из строя одного из ее компонентов;
б) сохраняемостью проектных значений параметров системы в течение запланированного периода времени;
в) устойчивостью финансового состояния организации;
г) перспективностью экономической, технической, социальной политики, обоснованностью миссии организации.
Надежность технических систем характеризуется безотказностью, долговечностью, ремонтопригодностью, сохраняемостью свойств системы в течение запланированного срока, Надежность социобиологических систем (человека) определяется наследственностью, темпераментом, характером, воспитанностью, интеллигентностью, состоянием здоровья, параметрами внешней среды. Очевидно, что большинство факторов надежности систем субъективны. Управление ими осуществляют специалисты и менеджеры.
Результаты проявления некоторых свойств системы (например, ее безотказности) определяются не сложением, а умножением относительных значений данного свойства каждого компонента системы. При построении дерева целей системы и оптимизации ее функционирования следует изучать проявление свойства мультипликативной системы. Например, безотказность системы определяется не сложением, а умножением коэффициентов безотказности ее компонентов.
В системе также принято выделять свойства, характеризующие параметры функционирования и развития системы.
Система существует, пока функционирует. Процессы в любойсистеме непрерывны и взаимообусловлены. Функционирование компонентов определяет характер функционирования системы как целого, и наоборот. Одновременно система должна быть способной к обучению и саморазвитию. Источниками развития (эволюции) социально-экономических систем являются: противоречия в различных сферах деятельности; конкуренция; многообразие форм и методов функционирования и др. При построении структуры системы и организации функционирования следует учитывать, что все процессы непрерывны и взаимообусловлены. Система функционирует на основе противоречий, конкуренции, многообразия форм функционирования и развития, способности системы к обучению. Каждая система (социальная, биологическая) стремится достичь наибольшего суммарного потенциала при прохождении всех этапов жизненного цикла. Развитие - это необратимое и направленное изменение материи.
Взависимости от конкретных параметров ситуаций, возникающих при стратегическом планировании и оперативном управлении, может быть несколько альтернативных путей достижения конкретной наиболее предсказуемые фрагменты стратегии например программы, планы, сетевые модели и т.д., в связи с высокой неопределенностью ситуации рекомендуется разрабатывать по нескольким альтернативным путям. Альтернативность путей функционирования и развития системы может носить как объективный, так и субъективный характер. При формировании стратегии системы следует обеспечить альтернативность путей ее функционирования и развития на основе прогнозирования различных ситуаций. Наиболее предсказуемые фрагменты стратегии следует планировать по нескольким вариантам, учитывающим различные ситуации.
Инерционность характеризуется скоростью изменения выходных параметр системы в ответ на изменение входных параметров и параметров ее функционирования, средним временем получения результата пи внесении изменений в параметры функционирования.
Инновационная деятельностьорганизации, направленная на эффективное использование природных ресурсов, труда и капитала для осуществления НИОКР, внедрение патентов и ноу-хау является главным условием экономии ресурсов, повышения конкурентоспособности товаров и жизненного уровня населения. Инновационный путь — единственный путь развития производственных систем. Основным и единственным путем развития организационно-экономических и производственных систем является инновационная деятельность. Внедрение новшеств (в форме патентов, ноу-хау, результатов НИОКР и т.д.) в области новых товаров, технологий, методов организации производства, менеджмента, а в других сферах служит фактором развития общества.
Делая вывод над всем вышесказанным, следует отметить, что для более глубокого изучения систем предлагается их классифицироватьпо следующим признакам:степени взаимодействия системы с внешней средой; размеру системы; ее назначению; степени свободы; уровню специализации; продолжительности функционирования; способу описания системы; типу используемых в субстанции величин. Дляболее полного и качественного описания систем с целью повышения их эффективности следует анализировать все свойствасистем, объединенные в четыре группы: свойства, характеризующие сущность и сложность системы; свойства, характеризующие связь системы с внешней средой; свойства, характеризующие методологию целеполагания системы; свойства, характеризующие параметры функционирования и развития системы.