Тема 3. Категориальный аппарат науки и системного анализа 2 страница

В основе функционирования технических систем лежат процессы, совершаемые машинами, а в основе функционирования организационно-экономических систем — процессы, совершаемые человеко-машинными комплексами.

Тема 3. Категориальный аппарат науки и системного анализа 2 страница - student2.ru

Схема 1.4 — Классификация систем

Абстрактные системы — это умозрительное представление образов или моделей материальных систем, которые подразделяются на описательные (логические) и символические (математические).

Логические системы есть результат дедуктивного или индуктивного представления материальных систем. Их можно рассматривать как системы понятий и определений (совокупность представлений) о структуре, об основных закономерностях состояний и о динамике материальных систем.

Символические системы представляют собой формализацию логических систем, они подразделяются на три класса:

· статические математические системы или модели, которые можно рассматривать как описание средствами

· математического аппарата состояния материальных систем (уравнения состояния);

· динамические математические системы или модели, которые можно рассматривать как математическую формализацию процессов материальных (или абстрактных) систем;

· квазистатические (квазидинамические) системы, находящиеся в неустойчивом положении между статикой и динамикой, которые при одних воздействиях ведут себя как статические, а при других воздействиях — как динамические.

Однако в литературе приводятся и другие классификации. Профессор Ю. Черняк дает такое подразделение систем [Черняк Ю.И. Системный анализ в управлении экономикой. М.: Экономика, 1975].

1. Большие системы (БС) — это системы, не наблюдаемые единовременно с позиции одного наблюдателя либо во времени, либо в пространстве. В таких случаях система рассматривается последовательно по частям (подсистемам), постепенно перемещаясь на более высокую ступень. Каждая из подсистем одного уровня иерархии описывается одним и тем же языком, а при переходе на следующий уровень наблюдатель использует уже мета-язык, представляющий собой расширение языка первого уровня за счет средств описания самого этого языка. Создание этого языка равноценно открытию законов порождения структуры системы и является самым ценным результатом исследования.

2. Сложные системы (СС) — это системы, которые нельзя скомпоновать из некоторых подсистем. Это равноценно тому, что:

    1. наблюдатель последовательно меняет свою позицию по отношению к объекту и наблюдает его с разных сторон;
    2. разные наблюдатели исследуют объект с разных сторон.

Пример: выбор материала ветрового стекла автомобиля. Задачу нельзя решить без того, чтобы не рассмотреть этот объект в самых разных аспектах и разных языках: прозрачность и коэффициент преломления — язык оптики; прочность и упругость — язык физики; наличие станков и инструментов для изготовления — язык технологии; стоимость и рентабельность — язык экономики и т.д.

Каждый из наблюдателей отбирает подмножество прозрачных материалов, удовлетворяющих его требованиям и критериям. В области пересечения подмножеств, отобранных всеми наблюдателями, мета-наблюдатель отбирает единственный материал, работая в метаязыке, объединяющем понятия всех языков низшего уровня и описывающем их свойства и соотношения. Трудность: подмножества, отобранные наблюдателями первого уровня, могут не пересечься. В таком случае мета-наблюдателю надо скомандовать некоторым из них (технологам, физикам и т.д.) снизить свои требования и, соответственно, расширить подмножества потенциальных решений. И здесь: экспертный опрос — важнейший инструмент системного анализа!

Системы можно соизмерять по степени сложности, используя разные аспекты самого этого понятия:

    1. путем соизмерения числа моделей СС;
    2. путем сопоставления числа языков, используемых в СС;
    3. путем соизмерения числа объединений и дополнений метаязыка.

Простота находится всегда в результате исследования! (Р. Акофф)

3. Динамические системы (ДС) — это постоянно изменяющиеся системы. Всякое изменение, происходящее в ДС, называется процессом. Его иногда определяют как преобразование входа в выход системы.

Если у системы может быть только одно поведение, то ее называют детерминированной системой.

Вероятностная система — система, поведение которой может быть предсказано с определенной степенью вероятности на основе изучения ее прошлого поведения (протокола).

Свойство равновесия — способность возвращаться в первоначальное состояние (к первоначальному поведению), компенсируя возмущающие действия среды.

Самоорганизация ДС — способность восстанавливать свою структуру или поведения для компенсации возмущающих воздействий или изменять их, приспосабливаясь к условиям окружающей среды.

Инвариант поведения ДС — то, что остается неизменным в ее поведении в любой отрезок времени.

4. Кибернетические, или управляющие, системы (УС) — системы, с помощью которых исследуются процессы управления в технических, биологических и социальных системах. Центральным понятием здесь является информация — средство воздействия на поведение системы. УС позволяет предельно упростить трудно понимаемые процесс и управления в целях решения задач исследования проектирования.

Важным понятием УС является понятие обратной связи (ОС). ОС — информационное воздействие выхода на вход системы.

5. Целенаправленные системы (ЦС) — системы, обладающие целенаправленностью (т.е. управлением системы и приведением к определенному поведению или состоянию, компенсируя внешние возмущения). Достижение цели в большинстве случаев имеет вероятностный характер.

Английский кибернетик С. Вир подразделяет все системы на три группы — простые, сложные и очень сложные. При этом он считает весьма существенным способ описания системы — детерминированный или теоретико-вероятностный (табл. 1.9).

Наш соотечественник математик Г.Н. Поваров делит все системы в зависимости от числа элементов, входящих и них, на четыре группы:

  • малые системы (10— 103 элементов);
  • сложные системы (103—107 элементов);
  • ультра-сложные системы (107 —1030 элементов);
  • супер-системы (1030— 10200 элементов).

В качестве примеров систем второй группы он приводит автоматическую телефонную станцию, транспортную систему большого города, третьей группы — организмы высших животных и человека, социальные организации, четвертой группы — звездную вселенную.

По способу описания По уровню сложности
Простые Сложные Очень сложные
Детерминированные
  • «Оконная задвижка»
  • Проект механических мастерских
  • ЦЭВМ
  • Автоматизация
Вероятностные
  • «Подбрасывание монеты»
  • «Движение медузы»
  • Систематический контроль качества продукции
  • Хранение запасов
  • Условные рефлексы
  • Прибыль промышленного предприятия
  • Экономика
  • Мозг
  • Фирма

Таблица 1.9 — Классификация систем по С. Виру

Ученые А. И. Берг и Ю. И. Черняк определяют СС как систему, которую можно описать не менее чем на двух различных математических языках, например на языке теории дифференциальных уравнений и на языке алгебры Буля.

Наши философы И. Блауберг, В. Садовский и Ю. Эдин предлагают классификацию системных объектов, опираясь на которую можно выделить обоснованно тот класс систем, который является специфическим для системных исследований и отличает эти последние от других направлений развития научного познания [Блауберг И.В. и др. Системный подход в современной науке // Проблемы методологии системного исследования. М.: Мысль, 1970].

По-видимому, классификация систем вряд ли может рассматриваться как самостоятельная задача, выдвинутая безотносительно к предмету и целям исследования. Поэтому проводимое ниже различение типов систем указанные авторы отнюдь не считают исчерпывающим и единственно возможным; оно используется лишь в качестве аргумента, поясняющего концепцию, развиваемую в данной статье.

Все существующие в действительности совокупности объектов (а всякая система представляет собой такую совокупность, хотя не всякая совокупность есть система) можно разбить на три больших класса: неорганизованные совокупности, неорганичные системы, органичные системы.

Неорганизованная совокупность (примерами ее могут служить куча камней, случайное скопление людей на улице) лишена каких-либо существенных черт внутренней организации. Связи между ее составляющими носят внешний, случайный, несущественный характер. Входя в состав такого объединения или покидая его, составляющие не претерпевают каких-либо изменений, что говорит об отсутствии у подобной совокупности целостных, интегративны свойств. Свойства совокупности в целом по существу совпадают с суммой свойств частей (составляющих), взятых изолированно. Следовательно, такая совокупность лишена системного характера.

Два других класса совокупностей — неорганичные и органичные системы — характеризует наличие связей между элементами и появление в целостной системе новых свойств, не присущих элементам в отдельности. Связь, целостность и обусловленная ими устойчивая структура — таковы отличительные признаки любой системы.

Если же мы пойдем дальше по пути классификации и попытаемся различить органичные и неорганичные системы, то обнаружим, что довольно трудно провести строгое разделение указанных систем по структурному принципу (т.е. по их составу, строению). Дело в том, что в основе различия органичных и неорганичных целостных систем лежат, как нам представляется, особенности присущих им процессов развития; структура же системы является результатом этих процессов и объясняется ими. Органичная система есть саморазвивающееся целое, которое в процессе своего индивидуального развития проходит последовательные этапы усложнения и дифференциации. Этим объясняются следующие специфические особенности органичных систем, отличающие их от систем неорганичных.

  1. Органичная система имеет не только структурные, но и генетические связи.
  2. Органичная система имеет не только связи координации (взаимодействия элементов), но и связи субординации, обусловленные происхождением одних элементов из других, возникновением новых связей и т.п.
  3. Органичная система имеет особые управляющие механизмы, через которые структура целого воздействует на характер функционирования и развития частей (биологические корреляции, центральная нервная система, система норм в обществе, органы управления и т. д.).
  4. В неорганичном целом в силу менее тесной зависимости между системой и ее составляющими основные свойства частей определяются их внутренней структурой, а не структурой целого. Связи внутри целого не вызывают коренных качественных преобразований частей. С этим связана способность частей неорганичного целого к самостоятельному существованию. В органичном же целом основные свойства частей определяются закономерностями, структурой целого. Зависимость между системой и ее компонентами столь тесна, что элементы системы лишены способности к самостоятельному существованию.
  5. Если в неорганичных системах элемент зачастую активней целого (например, ион химически активнее атома), то с усложнением организации активность все в большей мере передается от частей к целому.
  6. Органичное целое образуется не из тех частей, какие функционируют в развитом целом. В ходе развития органичной системы происходит качественное преобразование частей вместе с целым. Первичные компоненты внутри системы претерпевают трансформации, которыми определяется их современная форма.
  7. Устойчивость неорганичных систем обусловлена стабильностью элементов; напротив, необходимым условием устойчивости органичных систем является постоянное обновление их элементов.
  8. Внутри органичного целого существуют своеобразные блоки (подсистемы). Их гибкая приспосабливаемость к выполнению команд управляющей системы основана на том, что элементы подсистем функционируют вероятностным образом и имеют определенное число степеней свободы. Следовательно, жесткая детерминированность связи подсистем между собой и с целым реализуется через отсутствие однозначной детерминации в поведении элементов подсистем.

Сказанным, разумеется, не исчерпываются особенности органичных систем и их отличия от других видов системных объектов. Очевидно, можно было бы продолжить намеченную в общих чертах классификацию и провести определенную типологию органичных систем (в частности, по уровням иерархии внутри них, по типам управления). Но для нас сейчас важно подчеркнуть, что органичные системы — наиболее сложные из всех типов систем, поэтому их исследование наиболее перспективно в методологическом отношении.

Участники «общества по разработке ОТС» А. Холл и И. Фейджин на основании собственного определения системы приводят такую классификацию систем [Лекторский В.А., Садовский В.Н. О принципах исследования систем // Вопр. философии. 1960. N 8]. Если изменение в каждой отдельной части системы вызывает изменение всех других частей и в целой системе, то в этом случае система является целостной. Если изменение каждой части системы не вызывает изменение других частей, то система называется суммативной. Совершенно ясно, что благодаря такому разделению Холл и Фейджин получают возможность охватывать в своей теории значительно больший круг систем, чем Берталанфи.

Несмотря на то что классификация систем Холла и Фейджина более детальна, чем классификация Берталанфи, а их определение системы более широко по сравнению с определением системой Берталанфи, тем не менее эти модификации не вносят принципиальных изменений в существо «общей теории систем». И у Берталанфи, и у Холла—Фейджина речь идет о построении определенного математического аппарата, способного дать описание «поведения» достаточно обширного класса системных предметов.

Обобщенная классификация совокупностей объектов представлена схемой 1.5

Связь

Пожалуй, наибольшая смысловая нагрузка в ССИ приходится на понятие «связь». Более или менее определенно но понятие употребляется во всех работах, посвященных системному подходу. Вместе с тем следует признать, что столь частое употребление понятия связи отнюдь не сделало его ясным, четко очерченным по своему содержанию. Напротив, как это ни странно, имеющиеся в литературе попытки логико-методологического анализа этой проблемы весьма немногочисленны, а возможная обще-логическая классификация связей вообще не была предметом специального рассмотрения.

Класс систем
Неорганизованная совокупность Неорганичная система Органичная система
Куча камней, случайное скопление людей на улице, в автобусе, метро... Отсутствуют существенные черты внутренней организации. Связи носят внешний, случайным характер, целостные свойства отсутствуют. Свойства совокупности совпадают с суммой свойств частей, взятых изолированно. Таким образом, совокупность лишена системного характера. (Вспомните САПР!) Присутствуют связи между элементами, и появляются новые свойства, не присущие элементам в отдельности. Таким образом, связь, целостность и обусловленная ими устойчивая структура являются их признаками
Имеет только структурные связи (связи строения, например, химические). Имеет только связи координации (взаимодействия элементов). Отсутствуют управляющие механизмы. Зависимость между ТС и ее элементами менее жестка, поэтому основные свойства частей определяются их внутренней структурой, а не структурой целого. Связи внутри целого не вызывают коренных качественных преобразовании частей, поэтому части способны к самостоятельному существованию. (Выньте одну квартиру из дома как строительного комплекса — в остальных можно жить, с определенной вероятностью). Элемент зачастую активнее целого (например, ион химически активнее атома); с усложнением организации активность все в большей мере передается от частей к целому, т. е. целое более активно, чем части! Устойчивость обусловлена стабильностью элементов Имеет не только структурные, но и генетические связи. Имеет не только связи координации, но и связи субординации, обусловленные происхождением одних элементов из других, возникновением новых связен. Имеет особые управляющие механизмы, через которые структура целого воздействует на характер функционирования в развитии частей (биологическая корреляция, центральная нервная система, система норм в обществе, органы управления и т.д.). Основные свойства частей определяются закономерностями, структурой целого. Части лишены способности к самостоятельному существованию. (Один двигатель не полетит без ЗУР!) Необходимым условием устойчивости является постоянное обновление элементов (блоков); их гибкая приспособленность к выполнению команд управляющей системы основана на том, что элементы подсистем функционируют вероятностным образом и имеют определенное число степеней свободы

Схема 1 — Классификация совокупностей объектов

Краткий анализ литературы, посвященной проблеме связи, показывает, что в настоящее время, по-видимому, отсутствуют реальные предпосылки для построения не только исчисления связей, но и сколько-нибудь расчлененной «качественной» логико-методологической концепции связи как категории научного познания. Вместе с тем очевидно, что вокруг этой категории в значительной мере группируется вся проблематика, специфическая для системного подхода. Можно утверждать, что развитие системных исследований существенно зависит от успехов в логико-методологическом анализе содержания понятия «связь».

В диалектике, как известно, проблема связи является одной из центральных. Учение диалектики о связях охватывает учение о мире как о едином связном целом, о причинности, о единстве и борьбе противоположностей, о взаимоотношении качества и количества, содержания и формы, сущности и явления и т.д., а основным методом исследования является анализ материала конкретных наук в плане разработки обобщающей картины мира.

Предварительно связь предметов можно определить таким образом: два или более различных предмета связаны, если по наличию или отсутствию некоторых свойств у одних из них мы можем судить о наличии или отсутствии тех или иных свойств у других из них (возникновение и исчезновение предметов можно рассматривать как частный случай). Например, температура и давление данной массы газа связаны так, что с увеличением температуры (при всех прочих постоянных условиях) увеличивается давление. Зная о том, что температура увеличилась, мы можем делать вывод об увеличении давления (если выяснены точные количественные соотношения, то они учтутся и в выводах). Это свойство связей и обусловило особую познавательную ценность их обнаружения. Выявление связей позволяет познавать предметы не непосредственно, а косвенно, через другие предметы, находящиеся с ними в той или иной связи. Не приходится доказывать, насколько это важно для исследования предметов, не поддающихся непосредственному наблюдению, для разработки стандартных методов расчета, избавляющих от необходимости каждый раз ставить эксперимент, и т.п.

Характерным для приведенного определения является наличие в нем ссылок на логическое следование, на вывод одних знаний из других. Весьма возможно, конечно, что такого рода ссылок можно избежать. Но в рассмотренных нами случаях это достигается обычно за счет тавтологии, т.е. за счет ссылок на зависимость, обусловленность и другие понятия, которые сами выступают как синонимы понятия связи, за счет ссылок на частные формы связей (например, на причинность), за счет употребления выражений, которые сами нуждаются в разъяснениях через понятие связи (например, предметы считаются связанными, если изменение одних ведет к изменению других; здесь слово «ведет» создает лишь иллюзию определения, так как при попытке разъяснения его смысла мы будем вынуждены обратиться к данному выше предварительному определению связи.

Наличие в определении связи ссылки на логическое следование заставляет поставить принципиально важный вопрос о том пути, по которому следует идти в решении стоящей проблемы. Поскольку логическое следование характеризует взаимоотношение знаний о предметах, то вполне естественным представляется следующий путь: базируясь на принципе отражения, можно через определенные структуры знаний определять то, что соответствует этим знаниям, что ими отображается в объективной реальности. Например, можно определить отношения предметов как то, что соответствует высказываниям с многоместными предикатами. Аналогично обстоит дело со связями. Определив высказывания о связях как особый тип высказываний, можно определить сами связи как то, что отображается высказываниями этого рода. Подчеркиваем, что вопрос об определении одних факторов путем противопоставления их другим факторам и вопрос о взаимоотношении этих факторов безотносительно к их определению суть различные вопросы. Впрочем, определяя связь как то, что отображается в форме такого-то рода знаний, мы тем самым указываем на связь как на объективный источник знаний в полном соответствии с принципами теории отражения [Зиновьев А. А. К определению понятия связи // Вопр. философии. 1960. N 8].

Предпринятые в литературе попытки прямо и сразу построить обобщенную концепцию связи обнаружили относительно невысокую эффективность такого способа решения проблемы. Это заставило искать не столь прямых, но, может быть, более обнадеживающих путей анализа понятия связи и его места в современном познании. Одним из таких путей могло бы явиться определение (первоначально чисто эмпирическое) набора основных значений, в которых употребляется понятие связи в научной литературе, т.е.составление сугубо приблизительной эмпирической классификации связей. Приведем вариант подобной классификации [Блауберг И.В., Садовский В.Н., Юдин Э.Г. Системный подход в современной науке // Проблемы методологии системного исследования. М.: Мысль, 1970]:

  1. Связи взаимодействия (координации), среди которых можно различить связи свойства (такие связи фиксируются, например, в формулах физики типа pV = const) и связи объектов (например, гуморальные связи, связи между отдельными нейронами в тех или иных нервно-психических процессах). Особый вид связей взаимодействия составляют связи между отдельными людьми, а также между человеческими коллективами или социальными системами. Специфика этих связей состоит в том, что они опосредуются целями, которые преследует каждая из сторон взаимодействия. В рамках этого типа связей можно различить кооперативные и конфликтные связи. Следует отметить, что связи взаимодействия представляют наиболее широкий класс связей, так или иначе выступающий во всех иных типах связей.
  2. Связи порождения (генетические), когда один объект выступает как основание, вызывающие к жизни другой (например, связь типа «А отец В»).
  3. Связи преобразования, среди которых можно различить: связи преобразования, реализуемые через определенный объект, обеспечивающий это преобразование (такова функция химических катализаторов), и связи преобразования, реализуемые путем непосредственного взаимодействия двух или более объектов, в процессе которого и благодаря которому эти объекты порознь или совместно переходят из одного состояния в другое (таково, например, взаимодействие организмов и среды в процессе видообразования).
  4. Связи строения (их нередко называют структурными). Природа этих связей с достаточной ясностью раскрывается на примере химических связей.
  5. Связи функционирования, обеспечивающие реальную жизнедеятельность объекта или его работу, если речь идет о технической системе. Очевидное многообразие функции в объектах различного рода определяет и многообразие видов связей функционирования. Общим для всех этих видов является то, что объекты, объединяемые связью, совместно осуществляют определенную функцию, причем эта функция может характеризовать либо один из этих объектов (в таком случае другой является функционально-производным от первого, как это имеет место в функциональных системах живого организма), либо более широкое целое, по отношению к которому и имеет смысл функциональная связь данных объектов (таковы связи между нейронами при осуществлении тех или иных функций центральной нервной системы). В самом общем виде связи функционирования можно подразделить на связи состояний (когда следующее по времени состояние является функцией от предыдущего) и связи энергетические, трофические, нейронные и т.п. (когда объекты связаны единством реализуемой функции).
  6. Связи развития, которые можно рассматривать как модификацию функциональных связей состояний, с той, однако, разницей, что развитие существенно отличается от простой смены состояний. В функционировании более или менее строго определенная последовательность состояний, по существу, выражает основную схему содержания всего процесса. Развитие также описывается обычно как смена состояний развивающегося объекта, однако основное содержание процесса составляют при этом достаточно существенные изменения в строении объекта и в формах его жизни. С функциональной точки зрения функционирование есть движение в состоянии одного и того же уровня, связанное лишь с перераспределением элементов, функций и связей в объекте; при этом каждое последующее состояние либо непосредственно определено предыдущим, либо так или иначе «переформировано» всем строением объекта и не выходит за рамки его истории. Развитие же есть не просто самораскрытие объекта, актуализация уже заложенных в нем потенций, а такая смена состояний, в основе которой лежит невозможность сохранения существующих форм функционирования. Здесь объект как бы оказывается вынужденным выйти на иной уровень функционирования, прежде недоступный и невозможный для него, а условием такого выхода является изменение организации объекта. Весьма существенно, что в точках перехода от одного состояния к другому развивающийся объект обычно располагает относительно большим числом «степеней свободы» и ставится в условия необходимости выбора из некоторого количества возможностей, относящихся к изменению конкретных форм его организации. Все это определяет не только множественность путей и направлений развития, но и то важное обстоятельство, что развивающийся объект как бы сам творит свою историю. Проблема различения функционирования и развития является, как известно, одной из наиболее сложных и запутанных в философской в специально-научной литературе. Поэтому проведенное нами различие связей функционирования и связей развития следует понимать как условное.
  7. Связи управления, которые в зависимости от их конкретного вида могут образовывать разновидность либо функциональных связей, либо связей развития. В настоящее время невозможно дать развернутую характеристику связей управления, поскольку само понятие «управление» не имеет достаточно определенного значения. Вместе с тем эти связи принадлежат, по-видимому, к числу самых важных в системном исследовании и поэтому заслуживают особого обсуждения.

Предлагая такую классификацию связей, философы отмечают ее условность, объясняя исключительно сложным характером возможных связей и их спецификой в конкретных системах. Так, военные специалисты предлагают следующие виды связей: существенные и несущественные, частно-, внутри- и межсистемные, соответствующие трем уровням умственной деятельности человека, взаимные и односторонние, противоречивые и непротиворечивые, полезные и вредные, важные, не очень важные и неважные, прямые и обратные, жесткие (в технике) и гибкие (в экономике, живых существах и обществе) и др.

Особое внимание обращаем на следующие три вида связей:

  • Рекурсивная связь — необходимая связь между экономическими явлениями и объектами, при которой ясно, где причина и где следствие. Например, затраты в экономике всегда выступают в качестве причины, а их результаты — в качестве следствия. Между затратами и результатами существует рекурсивная связь. Но есть и некоторые исключения в современном НТП.
  • Синергетическая связь в ОТС определяется как связь, которая при совместных действиях независимых элементов системы обеспечивает увеличение их общего эффекта до значения, большего, чем сумма эффектов этих элементов, действующих независимо. Следовательно, это усиливающая связь элементов системы. Нужно заметить, что «недавно открытый» синергизм еще К. Маркс глубоко анализировал в «Каннибале» как новую силу, «которая возникает из слияния многих сил в одну общую...» [Маркс К., Энгельс Ф. // Соч. Т. 23. С. 337]. Именно из синергетических связей вытекают интегральные (эмерджентные) свойства, т.е. свойства целостной системы, которые не присущи составляющим ее элементам, рассматриваемым вне системы.
  • Циклическая связь — сложная обратная связь, при котором развитие науки двигает производство, а последнее создает основу для расширения научных исследований. В дальнейшем будет показано, как циклическая связь используется в принципиально новом объекте науки — ПЖЦ НТД.

Сделаем вывод: в окружающем нас мире существует очень большое количество разных связей — многомерных, многогранных, многозначных, многоплановых, которые мы должны учиться познавать.

Приведем примеры связей.

Мозг человека развивается и состоит из 14 млрд. нервных клеток. Каждая из них имеет 5000 связей с другими.

Наши рекомендации