Классические критерии принятия решений в играх с природой.

Классические критерии:

1. Минимаксный критерий

Классические критерии принятия решений в играх с природой. - student2.ru - оценочная функция

Надо дополнить платежную матрицу столбцом из наименьших результатов по строке и выбрать те варианты решений, которые содержат max-ное значение в этом результирующем столбце.

2. Критерий Байеса – Лапласа

В отличие от предыдущего, учитывается не единичный результат для любого варианта, а все возможные следствия. При этом требуется дополнительная информация, связанная с распределением вероятностей реализации внешних состояний.

Классические критерии принятия решений в играх с природой. - student2.ru

т.е. в результирующий дополнительный столбец записывается не min по строке, а мат.ожидание.

3. Критерий Сэвиджа.

Классические критерии принятия решений в играх с природой. - student2.ru

Классические критерии принятия решений в играх с природой. - student2.ru

Величину аij можно понимать как max-ный дополнительный выигрыш, который достигается если в состоянии Fj вместо варианта eij выбрать другой, оптимальный для этого состояния. Или как потери (штраф), возникающий в состоянии Fj при замене оптимального для него варианта на вариант хуже. В исходной матрице критерий Сэвиджа связан с риском. А сточки зрения элементов матрицы aij он от риска свободен.

4. Расширенный минимаксный критерий

Классические критерии принятия решений в играх с природой. - student2.ru ,

где p – вероятностный вектор для Ei , а q – вероятностный вектор для Fj.

Расширенный ММ-критерий задается целью найти наивыгоднейшее распределение вероятностей на множестве вариантов Ei , когда в многократно воспроизводящейся ситуации ничего не известно о вероятностях состояний Fj. Поэтому предполагается, что Fj распределены наименее выгодным образом.

Производные критерии принятия решений в играх с природой

1. Критерий Гурвица.

Оценочная функция этого критерия находится между точками зрения предельного оптимизма и крайнего пессимизма.

Классические критерии принятия решений в играх с природой. - student2.ru

где с – весовой множитель.

2. Критерий Ходжа-Лемана

Классические критерии принятия решений в играх с природой. - student2.ru ,

где p – вероятностный вектор для Ei , q – вероятностный вектор для Fj, Классические критерии принятия решений в играх с природой. - student2.ru -параметр, с помощью которого выражается степень доверия к используемому распределению вероятностей.

3. Составной BL(MM) критерий.

I1: Классические критерии принятия решений в играх с природой. - student2.ru

I2: Классические критерии принятия решений в играх с природой. - student2.ru

Классические критерии принятия решений в играх с природой. - student2.ru i ≤ I1∩I2.

I1 – множество проигрышей – номера тех вариантов, у которых min-ое значение в строке отличается от опорного решения, в качестве которого выступает величина, полученная по минимаксному критерию, не больше чем Классические критерии принятия решений в играх с природой. - student2.ru допустимое. Величина проигрыша задается заранее и если ее значение не задано, то берем половину от опорного значения.

I2 – множество выигрышей – номера вариантов решений, у которых разность между max-ным вариантом в строке решений и max-ным элементом в строке опорного варианта больше чем величина проигрыша.

4. Критерий Гермейера

Классические критерии принятия решений в играх с природой. - student2.ru

Данный критерий с самого начала ориентирован на величины потерь, т.е. на отрицательные значения eij.

5. Критерий произведений

Классические критерии принятия решений в играх с природой. - student2.ru

С самого начала этот критерий ориентирован на величины выигрышей, т.е. на положительные значения eij.

Шкала. Определение. Виды.

Рассмотрим эмпирическое множество АЭ = {а1, а2, …, аn}, в качестве объектов которого могут выступать варианты решения или альтернативы. На этом множестве альтернатив задано некоторое бинарное отношение РЭ. Такая пара образует эмпирическую систему с отношением UЭ=<АЭ, РЭ>. Каждому объекту множества АЭ можно сопоставить некоторое число. Множество всех числовых оценок: АЧ = {f(a1), f(a2), …, f(an)}. На множестве чисел задано бинарное отношение РЧ. АЧ с РЧ образуют числовую систему UЧ = <АЧ, РЧ>.

Соответствие между UЭ и UЧ устанавливается с помощью гомоморфного (односторонне однозначного) отношения f, такого, что (f(ai), f(aj)) Классические критерии принятия решений в играх с природой. - student2.ru PЧ, (аi, aj) Классические критерии принятия решений в играх с природой. - student2.ru PЭ.

Шкала - < UЭ, f, UЧ >.

Виды шкал:

1. Номинальная. Числа в ней являются обозначениями или именами классов объектов. Пр.: ответ на закрытый вопрос анкеты, ответы на которые перечислены заранее.

2. Ранговая, или порядковая. Применяется для разбиения объектов на классы эквивалентности и для упорядочения этих классов по интенсивности рассматриваемого признака. Пр.: шкала твердости минералов Мооса.

В номинальной шкале измеряется квалификации спортсменов, а в ранговой места, которые они занимают.

Наши рекомендации