Основные операции над множествами
Рис. 2.2. | Суммой или объединением двух или произвольного (даже бесконечного) числа заданных множеств называется множество, состоящее из всех элементов, принадлежащих хотя бы одному из заданных множеств. Эта операция над множествами обозначается знаком . |
Рис. 2.3. | Произведением или пересечением двух или произвольного (даже бесконечного) числа заданных множеств называется множество, состоящее из всех элементов, принадлежащих каждому из заданных множеств. Эта операция над множествами обозначается знаком . Если , то множества и называются непересекающимися. |
Два множества называются непересекающимися (или расчлененными) если . Практический интерес представляют разбиения множества на взаимно непересекающиеся подмножества (эту задачу иногда называются классификацией). Разбиением множества называется такая расчлененная система непустых подмножеств множества , что каждый элемент множества является элементом некоторого единственного множества этой системы. Возможность разбиения множества на непересекающиеся подмножества зависит от признака, по которому производится разбиение.
Рис. 2.4. | Разностью множеств и или дополнением до называется множество, состоящее только из тех элементов , которые не входят в . Эта операция над множествами обозначается знаком . |
Рис. 2.5. | Часто все рассматриваемые множества считают подмножествами одного основного множества . В таком случае разность (дополнение до ) обозначают, как , а операцию называют взятием дополнения. |
Рис. 2.6. | Симметрической разностью множеств и называется множество : . Обозначается симметрическая разность: или . |
Для подмножеств данного множества выполняются следующие законы:
· Закон коммутативности (переместительный закон):
; ;
· Закон ассоциативности (сочетательный закон) для любой тройки множеств , и :
;
;
· Закон дистрибутивности (распределительный закон) для любой тройки множеств , и :
;
;
· ; ;
· ; ;
· ; ;
· ;
· ;
· ; ;
· ; ;
· ; ;
· ; .
Если операции объединения множеств поставить в соответствие операцию сложения чисел, операции пересечения множеств – операцию умножения, универсальному множеству – единицу, а пустому множеству – ноль, то возникает аналогия между множествами и числами. Операции объединения и пересечения множеств, как и действия над действительными числами, подчиняются законам коммутативности, ассоциативности и дистрибутивности. Можно также провести аналогию между свойствами логических операций, где логической эквивалентности соответствует операция равенства, а операциям конъюнкции и дизъюнкции – операции объединения и пересечения.
Свойства фигурируют попарно таким образом, что каждое получается из соседнего заменой на , на и наоборот. Такие выражения называются двойственными друг другу.
Принцип двойственности. Для любого тождества множеств двойственное ему выражение также является тождеством.
Очевидно, что операция разность не обладает свойствами коммутативности и ассоциативности, в то же время операция симметрическая разность и коммутативна, и ассоциативна.
Большое значение в современной математике имеет множественная операциядекартово произведение.Если заданы два множества и , то из их элементов можно составить упорядоченные пары, взяв сначала какой-либо элемент первого множества, а затем – элемент второго множества. Декартовым произведением двух исходных множеств и называется множество , составленное из упорядоченных пар ( ). Декартово произведение множеств и обозначается .
Очевидно, что и ‑ различные множества, т.е. операция декартова произведения не коммутативна, но, в то же время, она обладает свойством ассоциативности.
Отображения
Отображение – одно из основных понятий математики. Отображение есть какое-либо правило или закон соответствия множеств. Пусть и – произвольные непустые множества. Говорят, что задано отображение множества на множество (запись: или ) если каждому элементу множества ( ) поставлен соответствие единственный, однозначно определенный элемент множества ( ).
Элемент называется образом элемента при отображении , а элемент называется прообразом элемента при этом отображении. Образом множества элементов при отображении называется множество всех элементов вида , принадлежащих области значений . Множество всех элементов ( ), образы которых составляютобласть значений называется прообразом множества элементов ( ). Множество называется областью определения отображения .
Отображение называется сюръективным, когда каждый элемент множества ( ) имеет хотя бы один прообраз множества ( ), т.е. , или .
Отображение называется инъективным, когда каждый элемент множества ( )является образом лишь одного элемента множества ( ), т.е. образы любых двух различных элементов множества различны, т.е. из следует .
Отображение называется биективнымили взаимно однозначным, когда оно одновременно инъективно и сюръективно, т.е. каждый элемент множества является образом одного и только одного элемента множества .
Равенство двух отображений и означает по определению, что их соответствующие области совпадают ( и ), причем .
Произведение двух отображений и можно определить как отображение , которое каждому элементу множества ставит в соответствие элемент множества .
Отображение множества на множество иначе называется функцией на множестве со значениями во множестве . Если множества и совпадают, то биективное отображение множества на себя называется преобразованием множества . Простейшее преобразование множества – тождественное – определяется так: . Тождественное отображение , переводящее каждый элемент в себя, также называют единичным преобразованием. Если заданы преобразования и , то преобразование , являющееся результатом последовательного выполнения сначала преобразования , а затем и преобразования , называется произведением преобразований и : .
Для преобразований , и одного и того же множества справедливы следующие законы:
·
·
·
Коммутативный закон для произведения преобразований в общем случае не выполняется, т.е. .
Если между двумя множествами можно задать биективное отображение (установить взаимно однозначное соответствие между их элементами), то такие множества называются эквивалентными или равномощными. Конечные множества равномощны только в том случае, когда число их элементов одинаково.
Бесконечные множества также можно сравнивать между собой.
Два множества имеют одинаковую мощность или называются эквивалентными (обозначение ), если между их элементами можно установить взаимно однозначное соответствие, т.е. если можно указать некоторое правило, в соответствии с которым каждому элементу одного из множеств соотносится один и только один элемент другого множества.
Если же подобное отображение невозможно, то множества имеют различную мощность; при этом оказывается, что в последнем случае, каким бы образом мы не пытались привести в соответствие элементы обоих множеств, всегда останутся лишние элементы и притом всегда от одного и того же множества, которому приписывается более высокое значение кардинального числа или говорят, что это множество имеет бόльшую мощность.
Бесконечное множество и некоторое его подмножество могут быть эквивалентными.
Множество, эквивалентное множеству натуральных чисел, называется счетным множеством. Для того чтобы множество было счетным, необходимо и достаточно, чтобы каждому элементу множества был поставлен в соответствие его порядковый номер . Из всякого бесконечного множества можно выделить счетное подмножество. Всякое подмножество счетного множества является счетным или конечным. Счетное множество является наиболее примитивно организованным бесконечным множеством. Декартово произведение двух счетных множеств является счетным. Объединение конечного или бесконечного числа конечных или счетных множеств является конечным или счетным множеством.