Определение передаточной функции.

Преобразование ДУ по Лапласу дает возможность ввести удобное понятие передаточной функции, характеризующей динамические свойства системы.

Например, операторное уравнение

3s2Y(s) + 4sY(s) + Y(s) = 2sX(s) + 4X(s)

можно преобразовать, вынеся X(s) и Y(s) за скобки и поделив друг на друга:

Y(s)*(3s2 + 4s + 1) = X(s)*(2s + 4)

Определение передаточной функции. - student2.ru .

Полученное выражение называется передаточной функцией.

Передаточной функцией называется отношение изображения выходного воздействия Y(s) к изображению входного X(s) при нулевых начальных условиях.

Определение передаточной функции. - student2.ru (2.4)

Передаточная функция является дробно-рациональной функцией комплексной переменной:

Определение передаточной функции. - student2.ru ,

где B(s) = b0 + b1s + b2 s2 + … + bm sm - полином числителя,

А(s) = a0 + a1s + a2 s2 + … + an sn - полином знаменателя.

Передаточная функция имеет порядок, который определяется порядком полинома знаменателя (n).

Из (2.4) следует, что изображение выходного сигнала можно найти как

Y(s) = W(s)*X(s).

Так как передаточная функция системы полностью определяет ее динамические свойства, то первоначальная задача расчета АСР сводится к определению ее передаточной функции.

Примеры типовых звеньев.

Звеном системы называется ее элемент, обладающий определенными свойствами в динамическом отношении. Звенья систем регулирования могут иметь разную физическую основу (электрические, пневматические, механические и др. звенья), но относится к одной группе. Соотношение входных и выходных сигналов в звеньях одной группы описываются одинаковыми передаточными функциями.

Простейшие типовые звенья:

· усилительное,

· интегрирующее,

· дифференцирующее,

· апериодическое,

· колебательное,

· запаздывающее.

1) Усилительное звено.

Определение передаточной функции. - student2.ru Звено усиливает входной сигнал в К раз. Уравнение звена у = К*х, передаточная функция W(s) = К. Параметр К называется коэффициентом усиления.

Выходной сигнал такого звена в точности повторяет входной сигнал, усиленный в К раз (см. рис. 1.15).

Примерами таких звеньев являются: механические передачи, датчики, безынерционные усилители и др.

2) Интегрирующее.

2.1) Идеальное интегрирующее.

Выходная величина идеального интегрирующего звена пропорциональна интегралу входной величины.

Определение передаточной функции. - student2.ru Определение передаточной функции. - student2.ru ; W(s) = Определение передаточной функции. - student2.ru

При подаче на вход звена воздействия выходной сигнал постоянно возрастает (см. рис. 1.16).

Это звено астатическое, т.е. не имеет установившегося режима.

2.2) Реальное интегрирующее.

Определение передаточной функции. - student2.ru Передаточная функция этого звена имеет вид:

W(s) = Определение передаточной функции. - student2.ru .

Переходная характеристика в отличие от идеального звена является кривой (см. рис. 1.17).

Примером интегрирующего звена является двигатель постоянного тока с независимым возбуждением, если в качестве входного воздействия принять напряжение питания статора, а выходного - угол поворота ротора.

3) Дифференцирующее.

3.1) Идеальное дифференцирующее.

Выходная величина пропорциональна производной по времени от входной:

Определение передаточной функции. - student2.ru ; W(s) = K*s

При ступенчатом входном сигнале выходной сигнал представляет собой импульс (d-функцию).

3.2) Реальное дифференцирующее.

Определение передаточной функции. - student2.ru Идеальные дифференцирующие звенья физически не реализуемы. Большинство объектов, которые представляют собой дифференцирующие звенья, относятся к реальным дифференцирующим звеньям. Переходная характеристика и передаточная функция этого звена имеют вид:

W(s) = Определение передаточной функции. - student2.ru .

4) Апериодическое (инерционное).

Этому звену соответствуют ДУ и ПФ вида:

Определение передаточной функции. - student2.ru ; W(s) = Определение передаточной функции. - student2.ru .

Определим характер изменения выходной величины этого звена при подаче на вход ступенчатого воздействия величины х0.

Изображение ступенчатого воздействия: X(s) = Определение передаточной функции. - student2.ru . Тогда изображение выходной величины:

Y(s) = W(s) X(s) = Определение передаточной функции. - student2.ru Определение передаточной функции. - student2.ru = K x0 Определение передаточной функции. - student2.ru .

Разложим дробь на простые:

Определение передаточной функции. - student2.ru = Определение передаточной функции. - student2.ru + Определение передаточной функции. - student2.ru = Определение передаточной функции. - student2.ru = Определение передаточной функции. - student2.ru - Определение передаточной функции. - student2.ru = Определение передаточной функции. - student2.ru - Определение передаточной функции. - student2.ru

Оригинал первой дроби по таблице: L-1{ Определение передаточной функции. - student2.ru } = 1, второй:

L-1{ Определение передаточной функции. - student2.ru } = Определение передаточной функции. - student2.ru .

Тогда окончательно получаем:

Определение передаточной функции. - student2.ru y(t) = K x0 (1 - Определение передаточной функции. - student2.ru ).

Постоянная Т называется постоянной времени.

Большинство тепловых объектов являются апериодическими звеньями. Например, при подаче на вход электрической печи напряжения ее температура будет изменяться по аналогичному закону (см. рис. 1.19).

5) Колебательное звено имеет ДУ и ПФ вида

Определение передаточной функции. - student2.ru Определение передаточной функции. - student2.ru ,

W(s) = Определение передаточной функции. - student2.ru .

При подаче на вход ступенчатого воздействия амплитудой х0 на переходная кривая будет

иметь один из двух видов: апериодический (при Т1 ³ 2Т2) или колебательный (при Т1 < 2Т2).

6) Запаздывающее.

y(t) = x(t - t), W(s) = e-ts.

Выходная величина у в точности повторяет входную величину х с некоторым запаздыванием t. Примеры: движение груза по конвейеру, движение жидкости по трубопроводу.

Соединения звеньев.

Поскольку исследуемый объект в целях упрощения анализа функционирования разбит нами на звенья, то после определения передаточных функций для каждого звена встает задача объединения их в одну передаточную функцию объекта. Вид передаточной функции объекта зависит от последовательности соединения звеньев:

Определение передаточной функции. - student2.ru 1) Последовательное соединение.

Wоб = W1.W2.W3

При последовательном соединении звеньев их передаточные функции перемножаются.

2) Параллельное соединение.

Определение передаточной функции. - student2.ru Wоб = W1 + W2 + W3 + …

При параллельном соединении звеньев их передаточные функции складываются.

Определение передаточной функции. - student2.ru 3) Обратная связь

Передаточная функция по заданию (х):

Определение передаточной функции. - student2.ru

«+» соответствует отрицательной ОС,

«-» - положительной.

Для определения передаточных функций объектов, имеющих более сложные соединения звеньев, используют либо последовательное укрупнение схемы, либо преобразуют по формуле Мезона.

Передаточные функции АСР.

Определение передаточной функции. - student2.ru Для исследования и расчета структурную схему АСР путем эквивалентных преобразований приводят к простейшему стандартному виду «объект - регулятор».

Это необходимо, во-первых, для того, чтобы определить математические зависимости в системе, и, во-вторых, как правило, все инженерные методы расчета и определения параметров настройки регуляторов применены для такой стандартной структуры.

В общем случае любая одномерная АСР с главной обратной связью путем постепенного укрупнения звеньев может быть приведена к такому виду.

Если выход системы у не подавать на ее вход, то мы получим разомкнутую систему регулирования, передаточная функция которой определяется как произведение:

W¥ = Wp.Wy

(Wp - ПФ регулятора, Wy - ПФ объекта управления).

Определение передаточной функции. - student2.ru То есть последовательность звеньев Wp и Wy может быть заменена одним звеном с W¥. Передаточную функцию замкнутой системы принято обозначать как Ф(s). Она может быть выражена через W¥:

Фз(s) = Определение передаточной функции. - student2.ru = Определение передаточной функции. - student2.ru .

(далее будем рассматривать только системы с обратной отрицательной связью, поскольку они используются в подавляющем большинстве АСР).

Данная передаточная функция Фз(s) определяет зависимость у от х и называется передаточной функцией замкнутой системы по каналу задающего воздействия (по заданию).

Для АСР существуют также передаточные функции по другим каналам:

Фe(s) = Определение передаточной функции. - student2.ru = Определение передаточной функции. - student2.ru - по ошибке,

Фв(s) = Определение передаточной функции. - student2.ru = Определение передаточной функции. - student2.ru - по возмущению.

Поскольку передаточная функция разомкнутой системы является в общем случае дробно-рациональной функцией вида W¥ = Определение передаточной функции. - student2.ru , то передаточные функции замкнутой системы могут быть преобразованы:

Фз(s) = Определение передаточной функции. - student2.ru = Определение передаточной функции. - student2.ru , Фe(s) = Определение передаточной функции. - student2.ru = Определение передаточной функции. - student2.ru .

Как видно, эти передаточные функции отличаются только выражения ми числителей. Выражение знаменателя называется характеристическим выражением замкнутой системы и обозначается как Dз(s) = A(s) + B(s), в то время как выражение, находящееся в числителе передаточной функции разомкнутой системы W¥, называется характеристическим выражением разомкнутой системы B(s).

Наши рекомендации