Тема: «Применение теории корреляции к решению задач профессиональной направленности».
Знания:
- отличие статистической зависимости от корреляционной,
- уравнение регрессии,
- система нормальных уравнений,
- коэффициент корреляции и его свойства.
Умения:
- составлять уравнение корреляционной зависимости;
- вычислять коэффициент корреляции и определять тесноту связи между признаками.
Задание 1.
1. Для выявления корреляционной зависимости массы Y (в г) растений определенного вида от их высоты Х (в мм) было проведено 10 опытов. Их результаты приведены в таблице.
xi | ||||||||||
yi | 4,1 | 2,5 | 3,9 | 5,2 | 3,3 | 4,4 | 4,4 | 3,8 | 4,9 | 4,0 |
Полагая, что между признаками X и Y имеет место линейная корреляционная связь, определите выборочное уравнение линейной регрессии и выборочный коэффициент линейной корреляции. Построить диаграмму рассеяния и линию регрессии. Сделать вывод о направлении и тесноте связи между признаками. Используя полученное уравнение линейной регрессии, вычислить предполагаемую массу растения при высоте 135 мм.
2. Для выявления корреляционной зависимости оптической плотности Y раствора от концентрации X растворённого вещества было проведено 10 опытов. Их результаты приведены в таблице.
xi | 1,2 | 1,1 | 1,3 | 1,6 | 1,95 | 1,05 | 1,75 | 1,7 | 1,55 | 1,45 |
yi | 0,75 | 0,03 | 10.0 | 3.5 | 7.0 | 0,6 | 0,16 | 0,45 | 4,5 | 0,5 |
Полагая, что между признаками X и Y имеет место линейная корреляционная связь, определите выборочное уравнение линейной регрессии и выборочный коэффициент линейной корреляции. Построить диаграмму рассеяния и линию регрессии. Сделать вывод о направлении и тесноте связи между признаками. Используя полученное уравнение линейной регрессии, вычислить предполагаемую оптическую плотность при концентрации 2 моль/кг.
3. Проведено 10 наблюдений на контрольными участками посева, где X – количество удобрений (т/га), а Y – урожайность (ц/га). Их результаты приведены в таблице.
xi | ||||||||||
yi |
Полагая, что между признаками X и Y имеет место линейная корреляционная связь, определите выборочное уравнение линейной регрессии и выборочный коэффициент линейной корреляции. Построить диаграмму рассеяния и линию регрессии. Сделать вывод о направлении и тесноте связи между признаками. Используя полученное уравнение линейной регрессии, вычислить предполагаемую урожайность при внесении 9 т/га удобрений.
4. Для выявления корреляционной зависимости массы Y (в г) растений определенного вида от их высоты Х (в мм) было проведено 10 опытов. Их результаты приведены в таблице.
xi | ||||||||||
yi | 3,0 | 3,2 | 2,1 | 3,0 | 3,2 | 2,1 | 4,1 | 3,3 | 2,4 | 2,6 |
Полагая, что между признаками X и Y имеет место линейная корреляционная связь, определите выборочное уравнение линейной регрессии и выборочный коэффициент линейной корреляции. Построить диаграмму рассеяния и линию регрессии. Сделать вывод о направлении и тесноте связи между признаками. Используя полученное уравнение линейной регрессии, вычислить предполагаемую массу растения при высоте 137 мм.
5. Для выявления корреляционной зависимости оптической плотности Y раствора от концентрации X растворённого вещества было проведено 10 опытов. Их результаты приведены в таблице.
xi | 1,1 | 1,4 | 1,22 | 1,6 | 1,58 | 1,85 | 1,58 | 1,95 | 1,7 | 1,8 |
yi | 9,5 | 13,0 | 10,0 | 12,0 | 8,0 | 13,6 | 8,5 | 14,5 | 6,5 | 9,5 |
Полагая, что меду признаками X и Y имеет место линейная корреляционная связь, определите выборочное уравнение линейной регрессии и выборочный коэффициент линейной корреляции. Построить диаграмму рассеяния и линию регрессии. Сделать вывод о направлении и тесноте связи между признаками. Используя полученное уравнение линейной регрессии, вычислить предполагаемую оптическую плотность при концентрации 3 моль/кг.
6. Проведено 10 наблюдений на контрольными участками посева, где X – количество удобрений (т/га), а Y – урожайность (ц/га). Их результаты приведены в таблице.
xi | ||||||||||
yi |
Полагая, что между признаками X и Y имеет место линейная корреляционная связь, определите выборочное уравнение линейной регрессии и выборочный коэффициент линейной корреляции. Построить диаграмму рассеяния и линию регрессии. Сделать вывод о направлении и тесноте связи между признаками. Используя полученное уравнение линейной регрессии, вычислить предполагаемую урожайность при внесении 10 т/га удобрений.
7. Для выявления корреляционной зависимости массы Y (в г) растений определенного вида от их высоты Х (в мм) было проведено 10 опытов. Их результаты приведены в таблице.
xi | ||||||||||
yi | 3,8 | 4,4 | 3,1 | 4,0 | 4,3 | 3,7 | 5,9 | 5,7 | 5,0 | 4,2 |
Полагая, что между признаками X и Y имеет место линейная корреляционная связь, определите выборочное уравнение линейной регрессии и выборочный коэффициент линейной корреляции. Построить диаграмму рассеяния и линию регрессии. Сделать вывод о направлении и тесноте связи между признаками. Используя полученное уравнение линейной регрессии, вычислить предполагаемую массу растения при высоте 115 мм.
8. Для выявления корреляционной зависимости оптической плотности Y раствора от концентрации X растворённого вещества было проведено 10 опытов. Их результаты приведены в таблице.
xi | 1,7 | 1,8 | 1,64 | 1,55 | 1,8 | 1,75 | 1,5 | 1,1 | 1,95 | 1,9 |
yi | 3.6 | 4.4 | 3.1 | 4.0 | 4.3 | 3.7 | 3.8 | 5.7 | 5.0 | 4.0 |
Полагая, что между признаками X и Y имеет место линейная корреляционная связь, определите выборочное уравнение линейной регрессии и выборочный коэффициент линейной корреляции. Построить диаграмму рассеяния и линию регрессии. Сделать вывод о направлении и тесноте связи между признаками. Используя полученное уравнение линейной регрессии, вычислить предполагаемую оптическую плотность при концентрации 2 моль/кг.
9. Проведено 10 наблюдений на контрольными участками посева, где X – количество удобрений (т/га), а Y – урожайность (ц/га). Их результаты приведены в таблице.
xi | ||||||||||
yi |
Полагая, что между признаками X и Y имеет место линейная корреляционная связь, определите выборочное уравнение линейной регрессии и выборочный коэффициент линейной корреляции. Построить диаграмму рассеяния и линию регрессии. Сделать вывод о направлении и тесноте связи между признаками. Используя полученное уравнение линейной регрессии, вычислить предполагаемую урожайность при внесении 23 т/га удобрений.
10. Для выявления корреляционной зависимости массы Y (в г) растений определенного вида от их высоты Х (в мм) было проведено 10 опытов. Их результаты приведены в таблице.
xi | ||||||||||
yi | 3,5 | 3,8 | 3,5 | 4,6 | 3,1 | 4,4 | 4,3 | 3,2 | 3,8 | 2,8 |
Полагая, что между признаками X и Y имеет место линейная корреляционная связь, определите выборочное уравнение линейной регрессии и выборочный коэффициент линейной корреляции. Построить диаграмму рассеяния и линию регрессии. Сделать вывод о направлении и тесноте связи между признаками. Используя полученное уравнение линейной регрессии, вычислить предполагаемую массу растения при высоте 95 мм.
11. Для выявления корреляционной зависимости оптической плотности Y раствора от концентрации X растворённого вещества было проведено 10 опытов. Их результаты приведены в таблице.
xi | ||||||||||
yi | 9.5 | 13.0 | 10.0 | 8.0 | 13.0 | 8.0 | 14.0 | 6.5 | 11.0 | 10.5 |
Полагая, что между признаками X и Y имеет место линейная корреляционная связь, определите выборочное уравнение линейной регрессии и выборочный коэффициент линейной корреляции. Построить диаграмму рассеяния и линию регрессии. Сделать вывод о направлении и тесноте связи между признаками. Используя полученное уравнение линейной регрессии, вычислить предполагаемую оптическую плотность при концентрации 155 моль/кг.
12. Проведено 10 наблюдений на контрольными участками посева, где X – количество удобрений (т/га), а Y – урожайность (ц/га). Их результаты приведены в таблице.
xi | ||||||||||
yi |
Полагая, что между признаками X и Y имеет место линейная корреляционная связь, определите выборочное уравнение линейной регрессии и выборочный коэффициент линейной корреляции. Построить диаграмму рассеяния и линию регрессии. Сделать вывод о направлении и тесноте связи между признаками. Используя полученное уравнение линейной регрессии, вычислить предполагаемую урожайность при внесении 18 т/га удобрений.
13. Для выявления корреляционной зависимости массы Y (в г) растений определенного вида от их высоты Х (в мм) было проведено 10 опытов. Их результаты приведены в таблице.
xi | ||||||||||
yi | 11,0 | 9,0 | 8,0 | 11,0 | 7,5 | 5,0 | 10,0 | 7,5 | 10,5 | 8,0 |
Полагая, что между признаками X и Y имеет место линейная корреляционная связь, определите выборочное уравнение линейной регрессии и выборочный коэффициент линейной корреляции. Построить диаграмму рассеяния и линию регрессии. Сделать вывод о направлении и тесноте связи между признаками. Используя полученное уравнение линейной регрессии, вычислить предполагаемую массу растения при высоте 155 мм.
14. Для выявления корреляционной зависимости оптической плотности Y раствора от концентрации X растворённого вещества было проведено 10 опытов. Их результаты приведены в таблице.
xi | 1,4 | 1,56 | 1,3 | 1,8 | 1,5 | 1,7 | 1,76 | 1,1 | 1,9 | 1,6 |
yi | 9.0 | 6.5 | 11.0 | 5.5 | 14.0 | 7.0 | 12.0 | 10.0 | 9.0 | 9.5 |
Полагая, что между признаками X и Y имеет место линейная корреляционная связь, определите выборочное уравнение линейной регрессии и выборочный коэффициент линейной корреляции. Построить диаграмму рассеяния и линию регрессии. Сделать вывод о направлении и тесноте связи между признаками. Используя полученное уравнение линейной регрессии, вычислить предполагаемую оптическую плотность при концентрации 2,5 моль/кг.
15. Проведено 10 наблюдений на контрольными участками посева, где X – количество удобрений (т/га), а Y – урожайность (ц/га). Их результаты приведены в таблице.
xi | ||||||||||
yi |
Полагая, что между признаками X и Y имеет место линейная корреляционная связь, определите выборочное уравнение линейной регрессии и выборочный коэффициент линейной корреляции. Построить диаграмму рассеяния и линию регрессии. Сделать вывод о направлении и тесноте связи между признаками. Используя полученное уравнение линейной регрессии, вычислить предполагаемую урожайность при внесении 9 т/га удобрений.
16. Для выявления корреляционной зависимости массы Y (в г) растений определенного вида от их высоты Х (в мм) было проведено 10 опытов. Их результаты приведены в таблице.
xi | ||||||||||
yi | 4,6 | 2,6 | 4,3 | 2,4 | 3,1 | 3,8 | 4,2 | 2,9 | 2,7 | 3,4 |
Полагая, что между признаками X и Y имеет место линейная корреляционная связь, определите выборочное уравнение линейной регрессии и выборочный коэффициент линейной корреляции. Построить диаграмму рассеяния и линию регрессии. Сделать вывод о направлении и тесноте связи между признаками. Используя полученное уравнение линейной регрессии, вычислить предполагаемую массу растения при высоте 65 мм.
17. Для выявления корреляционной зависимости оптической плотности Y раствора от концентрации X растворённого вещества было проведено 10 опытов. Их результаты приведены в таблице.
xi | ||||||||||
yi | 3.6 | 4.4 | 3.1 | 4.0 | 4.3 | 3.7 | 3.8 | 5.7 | 5.0 | 3.8 |
Полагая, что между признаками X и Y имеет место линейная корреляционная связь, определите выборочное уравнение линейной регрессии и выборочный коэффициент линейной корреляции. Построить диаграмму рассеяния и линию регрессии. Сделать вывод о направлении и тесноте связи между признаками. Используя полученное уравнение линейной регрессии, вычислить предполагаемую оптическую плотность при концентрации 50 моль/кг.
18. Проведено 10 наблюдений на контрольными участками посева, где X – количество удобрений (т/га), а Y – урожайность (ц/га). Их результаты приведены в таблице.
xi | ||||||||||
yi |
Полагая, что между признаками X и Y имеет место линейная корреляционная связь, определите выборочное уравнение линейной регрессии и выборочный коэффициент линейной корреляции. Построить диаграмму рассеяния и линию регрессии. Сделать вывод о направлении и тесноте связи между признаками. Используя полученное уравнение линейной регрессии, вычислить предполагаемую урожайность при внесении 9 т/га удобрений.
19. Для выявления корреляционной зависимости массы Y (в г) растений определенного вида от их высоты Х (в мм) было проведено 10 опытов. Их результаты приведены в таблице.
xi | ||||||||||
yi | 4,7 | 6,6 | 5,8 | 4,4 | 3,6 | 4,9 | 7,0 | 4,1 | 4,2 | 6,4 |
Полагая, что между признаками X и Y имеет место линейная корреляционная связь, определите выборочное уравнение линейной регрессии и выборочный коэффициент линейной корреляции. Построить диаграмму рассеяния и линию регрессии. Сделать вывод о направлении и тесноте связи между признаками. Используя полученное уравнение линейной регрессии, вычислить предполагаемую массу растения при высоте 145 мм.
20. Для выявления корреляционной зависимости оптической плотности Y раствора от концентрации X растворённого вещества было проведено 10 опытов. Их результаты приведены в таблице.
xi | 1,75 | 1,9 | 1,5 | 1,1 | 1,6 | 1,1 | 1,9 | 1,55 | 1,7 | 1,95 |
yi | 8.5 | 3.8 | 3.5 | 4.6 | 3.1 | 4.4 | 4.3 | 3.2 | 3.8 | 6.5 |
Полагая, что между признаками X и Y имеет место линейная корреляционная связь, определите выборочное уравнение линейной регрессии и выборочный коэффициент линейной корреляции. Построить диаграмму рассеяния и линию регрессии. Сделать вывод о направлении и тесноте связи между признаками. Используя полученное уравнение линейной регрессии, вычислить предполагаемую оптическую плотность при концентрации 3 моль/кг.