Применение теории предельного равновесия к решению задач об устойчивости откосов, фундаментов и сооружений. €

Применение теории предельного равновесия к решению задач об устойчивости откосов, фундаментов и сооружений

Применение теории предельного равновесия к решению задач об устойчивости откосов, фундаментов и сооружений. € - student2.ru Реальные грунты, как правило, обладают не только сцеплением, но и трением. В связи с этим проблема устойчивости откосов становится значительно сложнее.
Теория предельного равновесия грунтов, развитая В.В. Соколовским, позволяет решать задачи двух типов:
-задан угол наклона плоского откоса, определяется интенсивность
внешней нагрузки на верхней горизонтальной поверхности грунта, ограниченного откосом массива;
-задана интенсивность нагрузки на верхней горизонтальной поверхности грунта, офаниченного откосом массива, определяется форма равноустойчивого откоса, находящегося в предельном напряженном состоянии.
Задача первого типа, при однородных грунтах и плоском откосе (рис. 1) решена В.В. Соколовским в безразмерных величинах.
Рис. 1.Схема к расчету устойчивости плоского откоса по теории предельного равновесия
Исходными уравнениями для решения этой задачи являются:

Применение теории предельного равновесия к решению задач об устойчивости откосов, фундаментов и сооружений. € - student2.ru (1)

Применение теории предельного равновесия к решению задач об устойчивости откосов, фундаментов и сооружений. € - student2.ru Применение теории предельного равновесия к решению задач об устойчивости откосов, фундаментов и сооружений. € - student2.ru (2)

(3)

Применение теории предельного равновесия к решению задач об устойчивости откосов, фундаментов и сооружений. € - student2.ru Выражения (1) и (2), как было выше сказано, представляют дифференциальные уравнения равновесия, а (3) — условие предельного равновесия.
Предельная нагрузка на верхней горизонтальной поверхности откоса, зная q , определяется из выражения

(4)где q — безразмерный коэффициент, зависящий от углов внутреннего трения фи, расстояния х от края откоса до рассматриваемой точки).

Практика

1.$$$Расчет устойчивости в предложении круглоцилиндрических и плоских поверхностей скольжения. Учет динамических и сейсмических воздействий. – 142

Применение теории предельного равновесия к решению задач об устойчивости откосов, фундаментов и сооружений. € - student2.ru Реальные грунты, как правило, обладают не только сцеплением, но и трением. В связи с этим проблема устойчивости откосов становится значительно сложнее. Поэтому на практике для решения задач в строгой постановке, большое распространение получил метод круглоцилиндрических поверхностей скольжения.

Большое распространение на практике получил метод круглоцилиндрических поверхностей скольжения, сущность этого метода заключается в отыскании круглоцилиндрической поверхности скольжения с центром в некоторой точке О, проходящей через подошву откоса, для которой коэффициент устойчивости будет минимальным (рис. 1).
Рис. 1. Схема к расчету устойчивости откоса методом круглоцилиндрической поверхности скольжения
Расчет ведется для отсека, для чего оползающий клин ABC разбивается на n вертикальных отсеков. Делается предположение, что нормальные и касательные напряжения, действующие по поверхности скольжения, в пределах каждого из отсеков оползающего клина определяются весом данного отсека Qi, и равны соответственно:

(1)

(2)

Здесь Ai — площадь поверхности скольжения в пределах i-го вертикального отсека, Ai= 1li; li — длина дуги скольжения в плоскости чертежа (см. рис. 1).

Препятствующее оползанию откоса сопротивление сдвигу по рассматриваемой поверхности в предельном состоянии

(3)

Из (1)—(3) следует выражение для силы сопротивления сдвигу в пределах i-го отсека:

(4)

Устойчивость откоса можно оценить отношением моментов удерживающих Ms,l и сдвигающихMs,a сил. Соответственно коэффициент запаса устойчивости определим по формуле

(5)

Момент удерживающих сил относительно О представляет собой момент сил Qi:

(6)

Момент сдвигающих сил относительно точки О

(7)

Тогда формулу (4) можно записать в следующем виде:

(8)

Техника учета сейсмических сил в методе кругло цилиндрических поверхностей скольжения состоит в следующем. Вычисляется вес грунтов и насыщающей его воды в объеме каждого элемента. Сейсмическая сила Gsi, приложенная к элементу, определяется по формуле (7.28):

Gsi = μ Pgi , (7.28)

где Pgi - вес грунта и воды в объеме элемента отсека;

μ - коэффициент динамической сейсмичности, принимаемый при расчете естественных склонов по таблице 7.1 (при расчете устойчивости искусственных откосов значения, приведенные в таблице 7.1, следует увеличивать в 1,5 раза).

В силу неопределенности прогноза направления действия сейсмической силы, чаще всего ее прикладывают горизонтально (из глубины массива грунтов в сторону свободной поверхности).

2.$$$Группы предельных состояний при расчете оснований и фундаментов. – 143

Расчет оснований производят по первой группе (по несущей способности) — если необходимо обеспечить прочность и устойчивость основания, не допустить сдвиг или опрокидывание, если на основание передаются регулярно действующие горизонтальные нагрузки, если основания ограничены откосами или сложены скальными грунтами. По второй группе предельных состояний (по деформациям) — для всех зданий и сооружений, если основание сложено нескальными грунтами. Для оснований из нескальных пород рассчитывают осадки фундаментов и учитывают их неравномерность. Задачей расчета оснований по деформациям является ограничение деформаций надфундаментных конструкций пределами, гарантирующими от появления недопустимых для нормальной эксплуатации конструкций трещин и повреждений, а также изменений проектных уровней и положений.

3.$$$Нагрузки и воздействия, учитываемые при расчете оснований и фундаментов. – 144

Нагрузки и воздействия на основания, передаваемые фундаментами сооружений, должны устанавливаться расчетом, как правило, исходя из рассмотрения совместной работы сооружения и основания.
Учитываемые при этом нагрузки и воздействия на сооружение или отдельные его элементы, коэффициенты надежности по нагрузке, а также возможные сочетания нагрузок должны приниматься согласно требованиям СНиП по нагрузкам и воздействиям.
Нагрузки на основание допускается определять без учета их перераспределения надфундаментной конструкцией при расчете:
а) оснований зданий и сооружений III класса;
б) общей устойчивости массива грунта основания совместно с сооружением;
в) средних значений деформаций основания;
г) деформаций основания в стадии привязки типового проекта к местным грунтовым условиям.
Расчет оснований по деформациям должен производиться на основное сочетание нагрузок; по несущей способности - на основное сочетание, а при наличии особых нагрузок и воздействий - на основное и особое сочетание.
При этом нагрузки на перекрытия и снеговые нагрузки, которые согласно СНиП по нагрузкам и воздействиям могут относиться как к длительным, так и к кратковременным, при расчете оснований по несущей способности считаются кратковременными, а при расчете по деформациям - длительными. Нагрузки от подвижного подъемно-транспортного оборудования в обоих случаях считаются кратковременными.
В расчетах оснований необходимо учитывать нагрузки от складируемого материала и оборудования, размещаемых вблизи фундаментов.
Усилия в конструкциях, вызываемые климатическими температурными воздействиями, при расчете оснований по деформациям не должны учитываться, если расстояние между температурно-усадочными швами не превышает значений, указанных в СНиП по проектированию соответствующих конструкций.
Нагрузки, воздействия, их сочетания и коэффициенты надежности по нагрузке при расчете опор мостов и труб под насыпями должны приниматься в соответствии с требованиями СНиП по проектированию мостов и труб.

4.$$$Учёт совместной работы основания, фундамента и надфундаментной конструкции. Предельные деформации оснований. – 145

Подземная часть здания и сооружения представляет собой две взаимосвязанные системы «фундамент» - «грунтовое основание», зависящие от конструктивных особенностей надземного сооружения.
Фундаменты устраиваются для передачи нагрузок от конструкций зданий и сооружений, установленного в них технологического и другого оборудования и полезных нагрузок на грунты основания. Основание, воспринимая эти нагрузки, претерпевает, как правило, неравномерные деформации, что вызывает появление в конструкциях дополнительных перемещений и усилий. Неправильное проектирование, подготовка оснований и возведение фундаментов могут привести к тому, что даже выполненная согласно проекту конструкция сооружения перестанет удовлетворять предъявляемым к ней эксплуатационным требованиям.
Одной из характерных особенностей неправильного возведения фундаментов является то, что его отрицательное действие проявляется после накопления грунтами основания достаточных деформаций, то есть, как правило, в период эксплуатации сооружения. Известны случаи, когда уже построенные и заселенные здания из-за развития чрезмерных деформаций приходилось срочно подвергать сложным ремонтно-восстановительным работам, а нередко и полностью или частично разбирать. Таким образом, ошибки, допущенные при проектировании и возведении фундаментов, или стремление к неоправданной экономии ресурсов могут потребовать проведения дополнительных мероприятий, стоимость которых во много раз превысит стоимость фундаментов.
Можно сформулировать общие требования, предъявляемые в действующих нормативных документах к проектированию оснований и фундаментов:
· обеспечение прочности и эксплуатационных параметров зданий и сооружений (общие и неравномерные деформации не должны превышать допустимых величин);
· максимальное использование прочностных и деформационных свойств грунтов основания, а также прочности материала фундамента;
· достижение минимальной стоимости, материалоемкости и трудоемкости, сокращение сроков строительства.
Соблюдение этих положений основывается на выполнении указанных ниже условий:
· комплексный учет при выборе типа оснований и фундаментов инженерно-геологических и гидрогеологических условий строительной площадки;
· учет влияния конструктивных и технологических особенностей сооружения на его чувствительность к неравномерным осадкам;
· оптимальный выбор методов выполнения работ по подготовке оснований, устройству фундаментов и подземной части сооружений;
· расчет и проектирование оснований и фундаментов с учетом совместной работы системы «основание - фундаменты - конструкции сооружения».

Совместная деформация основания и сооружения может характеризоваться:

осадкой (подъемом) основания фундамента s;

средней осадкой основания фундамента I;

относительной разностью осадок (подъемов) основания двух фундаментов As/L (L— расстояние между фундаментами);

креном фундамента (сооружения) i;

относительным прогибом или выгибом f/L (L— длина однозначно изгибаемого участка сооружения);

кривизной изгибаемого участка сооружения;

относительным углом закручивания сооружения;

горизонтальным перемещением фундамента (сооружения) Uh.

5.$$$Учёт инженерно – геологических и климатических условий, особенностей сооружения и методов производства работ при назначении предельных деформаций. – 146

6.$$$Современные и перспективные виды фундаментов (материалы, конструкции, методы устройства, области применения). Вариантное проектирование, принципы технико–экономического сопоставления вариантов фундаментов. – 147

Выбор типа оснований или конструктивного решения фундаментов выполняется на основании технико-экономического сравнения различных вариантов.

К техническим показателям относятся: тип оснований и конструкции фундаментов, расчетные осадки, материалоемкость.

К экономическим показателям относятся: приведенные затраты, сметная стоимость, трудоемкость изготовления, продолжительность работ, капитальные вложения в материально-техническую базу строительства, эксплуатационные затраты.

Для сравнения различных вариантов фундаментов используется принцип сопоставимости, который предполагает, что все варианты должны быть рассчитаны на одинаковые нагрузки для одних и тех же грунтовых условий.

Варианты решений фундаментов должны основываться на объективных данных инженерно-геологических изысканий. Проектные решения фундаментов следует сравнивать при равной степени проработки конструктивных элементов, определяя приведенные затраты.

Выбор основания заключается в определении несущего слоя грунта, исходя из инженерно-геологических условий строительной площадки. На рис. Ф.8.5 показаны три типа различных инженерно-геологических условий и приведены показатели, по которым можно косвенно судить о прочности грунтов основания.

Применение теории предельного равновесия к решению задач об устойчивости откосов, фундаментов и сооружений. € - student2.ru При однородном основании выбор несущего слоя однозначен, но подобные грунтовые условия встречаются редко. Более часто основание бывает сложено разнородными грунтами, например такими, как показано на рис. Ф.8.5,а,б,в. Во втором случае более прочным является второй слой (показатель текучести IL имеет минимальное значение), а в третьем - первый и третий слои грунта.

 
Рис. Ф.8.5. Различные схемы напластований грунтов и варианты рекомендуемых типов фундаментов: а - прочный грунт (1) подстилается еще более прочным (2); б - слабый грунт сверху (3) подстилается прочным (1); в - слой слабого грунта (3) находится между более прочными слоями (1): в этом случае можно предложить закрепление (5)

В общем случае, если стоимость фундаментов не имеет определяющего значения, в качестве несущего слоя могут приниматься любые грунты, но не рекомендуется для него использовать ил, торф, рыхлые песчаные и текучепластичные глинистые грунты.

При выборе типа фундаментов определяющим является конструктивное решение здания или сооружения. Как правило, для жилых зданий применяются ленточные сборные или монолитные фундаменты, а для промышленных зданий - отдельно стоящие сборные или монолитные фундаменты. В том случае, если несущий слой грунта находится на расстоянии более 3-5 м от поверхности, применяют свайные фундаменты. Для специальных сооружений типа элеваторов, градирен, дымовых труб, АЭС и ТЭЦ могут применяться фундаменты в виде сплошных железобетонных плит с глубиной заложения не более 5 м. При неоднородном основании в некоторых случаях для жилых и административных зданий может оказаться более эффективным применение фундаментов в виде перекрестных лент и сплошных плит.

7.$$$Конструкции фундаментов: монолитные и сборные массивные фундаменты, ленточные, коробчатые и плитные фундаменты. – 148

Виды фундаментов: классификации, особенности устройства

По виду используемого строительного материала различают следующие виды фундаментов:

Каменный (бывает бутовый, кирпичный, бутобетонный);

Железобетонный (бывает сборный и монолитный);

Деревянный.

По виду конструкции фундаменты бывают:

Ленточный – такой фундамент располагается под всеми конструкциями сооружения в виде сплошной ленты. Различают ленточный сборный и ленточный монолитный. Применяется в строительстве домов, стены которых делают из кирпича и блоков. В зависимости от уровня промерзания почвы бывает малозаглубленный и заглубленный.

Плитный (сплошной) – этот вид фундамента располагается под всеми конструкциями в виде плиты. Используется фундаментная плита для перераспределения нагрузки на фундамент, понижая нагрузки на слабых участках грунта и увеличивая сильные участки.

Столбчатый – располагается лишь под колоннами каркаса здания. Используется в строительстве домов с несущим каркасом.

Свайный – очень трудоемкий вид фундамента, который используют под все три вышеперечисленных вида фундамента. Бывает сборным и монолитным.

Ленточный фундамент

Ленточный фундамент представляет собой железобетонную замкнутую полосу, которую укладывают под все стены сооружения, выполненные из кирпича, пеноблоков и др. штучных материалов. Такая полоса распределяет нагрузку от построенного дома по всему периметру. Это позволяет противостоять силам выпирания грунта, защищает от проседания и перекоса дома.

В зависимости от типа устройства ленточного фундамента выделяют:

Монолитный ленточный фундамент;

Сборный ленточный фундамент.

Таким образом, можно сделать вывод о том, что у ленточного фундамента есть масса преимуществ:

Относительно низкая стоимость его возведения;

Прочность;

Длительный срок службы;

Монтаж сборного ленточного можно проводить в любое время года;

Сборный ленточный фундамент подходит для постройки любых жилых домов.

Столбчатый фундамент

Столбчатый фундамент используется для каркасных сооружений, с легкими стенами и без подвалов, нагрузка от которых на грунт очень мала. Такой фундамент чаще всего применяется для строительства бань, дач и т.п. Стоимость его возведения намного меньше, чем у ленточного фундамента (до 75%).

Основными элементами столбчатого фундамента является:

Подошва – она передает нагрузку на почву от колонны сооружения

Стакан – железобетонная колонна или стойки с анкерными болтами

В зависимости от типа устройства столбчатого фундамента выделяют:

Монолитный столбчатый фундамент;

Сборный столбчатый фундамент.

Свайный фундамент

Свайный фундамент применяют при строительстве на слабых почвах. Выделяют сваи-стойки и висячие сваи в зависимости от способов передачи нагрузки на грунт от конструкций сооружений.

Если под слабым грунтом на небольшой глубине находится мощный слой сильного грунта, то в этом случае применяют сваи-стойки, которые прорезают слабый грунт и передают нагрузку на сильный, опираясь на него.

Если слой сильного грунта залегает достаточно глубоко, то применяются висячие сваи, уплотняющие грунт при их опускании, который используется в качестве основания.

Монтажные работы осуществляются по следующей схеме:

По типу материала фундамент различают:

стальные;

грунтовые;

деревянные;

железобетонные;

набивные бетонные и железобетонные.

По методу опускания в землю фундамент бывает:

забивной;

буронабивной;

завинчивающийся.

Плитный фундамент

Плитный фундамент, состоящий из сплошной железобетонной плиты, используют при высоком уровне грунтовых вод на слабых почвах для постройки многоэтажных и высоких зданий. Фундамент устойчив к любым видам деформаций и очень хорошо справляется с вертикальными максимальными нагрузками без значительных потерь его функциональных качеств. Плита не заглубляется, поэтому земляные работы минимальны. Это позволяет уменьшить дополнительные расходы материалов. Плитный фундамент обладает длительным сроком службы.

Такой тип фундамента применяется чаще всего в районах, где есть опасность возникновения землетрясений.

Плитный фундамент используется в случаях:

Чтобы избежать неравномерности осадки зданий. Плитный фундамент позволяет перераспределить нагрузки – уменьшить давление на слабых участках почвы и увеличить на сильных участках;

При массивности здания, а значит и больших нагрузках;

Чтобы разместить технологическое оборудование. Причем в этом случае при модернизации производства перестановка оборудования не влечет за собой реконструкцию плитного фундамента.

Выделяют виды плитных фундаментов таких, как: монолитные железобетонные балочные фундаменты, монолитные железобетонные своды и сплошные плиты, массивные блоки и коробчатые конструкции.

8.$$$Гидроизоляция, дренаж и защита фундаментов от агрессивных жидкостей и грунтовых вод. – 149

Защита фундамента от грунтовых вод.

Для сохранения стен дома от грунтовых вод устраивают дренаж (гидроизоляцию) фундамента.

Иногда борьбу с подземными водами ведут с помощью системы дренажа. Цель этой системы понизить на необходимом участке уровень грунтовых вод. Но необходимо учитывать, что устройство системы дренажа требует больших начальных расходов при строительстве.

Дренаж фундамента — это инженерное сооружение, которое защищает здание от воздействия избыточной влаги. Грамотно спроектированная и правильно собранная система дренажа фундамента способна предотвратить повреждения здания, вызванные повышенной влажностью:

образование инея, обмерзлости, плесени;

подтопление погребов;

отсыревание пола первого этажа здания;

образование наледей и луж на дорожках, расположенных вблизи здания.

Гидроизоляция.

Гидроизоляция — плотная водонепроницаемая прослойка из окрасочных, рулонных или других материалов, предназначенная для защиты строительных конструкций или других объектов от увлажнения грунтовыми водами или другими жидкостями.

Гидроизоляция устраивается в виде нескольких изоляционных слоев водонепроницаемых материалов (толя, рубероида и др.), укладываемых на мастике или цементном растворе, а также в виде штукатурки жирным цементным раствором с добавлением церезита.

По способу устройства и виду используемых материалов различают следующие виды гидроизоляции:

Штукатурная асфальтовая гидроизоляция.

Окрасочная гидроизоляция.

Оклеенная гидроизоляция.

Литая асфальтовая гидроизоляция.

Цементная штукатурная гидроизоляция.

9.$$$Основание положения расчета фундаментов из большеразмерных плит и лент. Гибкие фундаменты. – 150

Гибкие сооружения, передавая нагрузку на основание, следуя за осадкой, которая может быть различна в каждой точке. При такой деформации в них не возникает практические никакие усилия разрушения. Такие сооружения имеют статически определенную схему. Гибкие могут быть фундаменты у которых отношение h/l<1/3.
Такими фундаментами являются:

Ленточные под колонны промышленных и гражданских зданий

Сплошные ж/б плиты высотного здания, элеваторов, АС.

Фундаменты из перекрестных лент

Коробчатые фундаменты

Кольцевые фундаменты дымовых труб

Выбор конструкции гибких фундаментов производится с учетом конструктивной схемы здания, величины и характера распределения нагрузок в плане, несущей способности и деформативности основания.
Ленточные фундаменты под колонну устраиваются в виде одинарных или перекрестных лент. Плитные фундаменты устраиваются под всем зданием, выполняются из монолитного ж/б класса В15. при глинистом основании необходима песчаная или гравийно-песчаная подсыпка под бетонную подготовку.
Армирование производят в двух зонах, как в верхней так и в нижней. Каждая зона должна иметь арматуру рабочую в двух направлениях (А3).
Наибольшее распространение в практике проектирования гибких фундаментов получили следующие методы:
Теория местных деформаций (Теория Винкнера)

Теория упругого полупространства

Теория упругого слоя, ограниченной толщины, на несжимаемом основании

теория упругого слоя с переменным модулем деформации основания по глубине

Условие прочности плитного фундамента на продавливание бетона базами колонн или подколонниками (банкетками) без учета поперечной арматуры принимают в соответствии с указаниями главы СНиП на проектирование бетонных и железобетонных конструкций в виде зависимости

Применение теории предельного равновесия к решению задач об устойчивости откосов, фундаментов и сооружений. € - student2.ru (27)

где

Рп - продавливающая сила, определяемая по формуле

Применение теории предельного равновесия к решению задач об устойчивости откосов, фундаментов и сооружений. € - student2.ru (28)

здесь

Р - расчетная нагрузка на колонну;

F0 - площадь нижнего основания пирамиды продавливания;

р - среднее давление на грунт в пределах нижнего основания пирамиды продавливания от расчетных нагрузок (для предварительных расчетов р принимают равным отношению расчетной нагрузки на колонну в уровне верха фундамента к площади фундамента, определяемой как произведение полусумм расстояний между колоннами, но не более, чем 6 × 6 м, а затем уточняют по результатам статического расчета);

Rp - расчетное сопротивление бетона на осевое растяжение;

bср - средний периметр пирамиды продавливания;

h - рабочая высота сечения плитного фундамента;

kп - коэффициент, принимаемый равным 1 (для тяжелого бетона).

10.$$$Виды фундаментов глубокого заложения. Область применения опускных колодцев. Определение размеров опускного колодца в плане. Расчёты на всплытие, затирание, прогиб, перегиб. Кессоны. Область применения. – 151

Применение теории предельного равновесия к решению задач об устойчивости откосов, фундаментов и сооружений. € - student2.ru В практике современного строительства используют фундаменты глубокого заложения, хотя по сравнению с фундаментами, возводимыми в открытых котлованах, и свайными область их применения несколько ограничена. В основном данный тип фундаментов применяют при возведении уникальных сооружений — с большими нагрузками на основание, а также при строительстве заглубленных помещений зданий, подземных гаражей, пешеходных переходов и туннелей, отстойников, водозаборных сооружений, мостовых опор и др.
В настоящее время применяют следующие типы фундаментов глубокого заложения: оболочки, опускные колодцы и кессоны, глубокие опоры (набивные столбы), фундаменты, возводимые методом «стена в грунте».
Опускной колодец представляет собой сборную или монолитную железобетонную конструкцию, которая может иметь прямоугольное или кольцевое очертание в плане. Тяжелые массивные опускные колодцы выполняют, как правило, в монолитном варианте, а облегченные — в виде сборных свай-оболочек.
Массивный опускной колодец погружается в грунт следующим образом. На поверхности основания возводят пустотелую нижнюю часть фундамента (рис. 1, в). Затем, используя землеройные механизмы, через вертикальную полость извлекают грунт. Под действием собственного веса колодец погружается (рис. 1, г). По мере опускания колодец можно наращивать, получая фундамент требуемой глубины. По достижении проектной отметки нижнюю часть колодца заполняют бетонной смесью, увеличивая площадь подошвы фундамента. При возведении канализационных насосных станций известны случаи погружения опускных колодцев диаметром до 70 м на глубину более 70 м.
Способ возведения фундаментов с помощью кессона основывается на отжатии подземных вод из зоны разработки грунта с помощью избыточного давления, создаваемого сжатым воздухом.
Кессон представляет собой жесткую коробчатую конструкцию, имеющую потолок и боковые стенки консоли, располагаемые в нижней части фундамента. В рабочую камеру подается сжатый воздух по трубам, давление которого назначается таким, чтобы уравновесить давление столба воды высотой Н и обеспечить ее отсутствие в рабочей камере. Для сообщения с рабочей камерой, которое необходимо в основном для прохода людей, подачи материалов и оборудования, на шахтной трубе устанавливают шлюзовой аппарат. Разработку грунта часто осуществляют гидромонитором, а его удаление — с помощью эрлифта.
По мере разработки грунта в рабочей камере кессон под действием собственного веса и надкессонной кладки погружается в грунт. Надкессонную кладку наращивают по мере погружения кессона. По достижении кессона проектной отметки рабочую камеру заполняют кладкой или бетонной смесью, шахтные трубы и шлюзовые аппараты снимают, а шахтные колодцы также заполняют кладкой или бетонной смесью.
Кессоны выполняют из монолитного или сборного железобетона и рассчитывают на нагрузки, действующие на опускные колодцы совместно с дополнительными: от веса кладки и избыточного давления на стенки рабочей камеры.
Рис. 11.1. Опускные колодцы:
а – массивный опускной колодец, разделенный на ячейке; б — легкий опускной колодец из цилиндрической сваи-оболочки; в — установка колодца на поверхности грунта; г — разработка грунта грейфером и заполнение нижней части бетонной смесью

11.$$$Расчет оснований фундаментов глубокого заложения по предельным состояниям. – 152

Проектирование конструкций сооружения и их оснований осуществляется по предельным состояниям, которые подразделяются на две группы. Первая группа – по несущей способности – потеря устойчивости или формы, возможные виды разрушений, ползучесть или текучесть материала, чрезмерное раскрытие трещин и др. Вторая группа – по непригодности к нормальной эксплуатации.
Предельные состояния оснований существенно отличаются от предельных состояний строительных конструкций, в том числе и самого фундамента, т.к. у них различные условия работы, а именно: материалы в строительных конструкциях и грунтов в основаниях; физико-механические свойства; критерии оценки прочности и деформативности оснований и возводимых на них фундаментов и надземных конструкций.
Предельными состояниями основания считается такие, в результате которых возникают предел. состояния самого сооружения.
Основной целью расчёта по предельным сост. является: ограничение усилий (I-я группа предел. сост.) F< Fu и деформаций (II-е пред.сост.) S < Su , чтобы они не наступили, т.е. была бы обеспечена в дальнейшем возможность эксплуатации зданий и сооружений.
По I- пред. сост. оценивается:
- надёжность конструкций , из условия недопущения потери общей устойчивости основания.
F – усилие от сооружения
Fu – несущая способность основания
Если оцениваем по вертикальной составляющей несущей способности N < Nu ,
несоблюдение этого условия не гарантирует, что может быть допущена дальнейшая эксплуатация здания или сооружения.
По первому пред. сост. расчёт ведут в случаях:
– основание – скальный грунт
– если на основание передаются значительные горизонтальные нагрузки, в том числе и сейсмические
– сооружение расположено на откосе или в близи его
– сооружение расположено на медленно уплотняющихся водонасыщеных грунтах
– при анкерных фундаментах
В остальных случаях оценка по II-му пред.сост., ограничивает нагрузки и они значительно меньше чем мы получили бы от использования условий по I-му предельному сост.
По II-му предельному состоянию оценивается:
Выполнение основного условия S < Su, где
S – совместная деформация основания и сооружения, в том числе осадка или относительная разность осадок
Su – предельно допустимая деформация или предельная относительная деформация
Условие S < Su – основное для II-го пред. сост., а значения S и Su имеют обобщённое значение, т.е. средняя или max осадка, горизонтальные перемещения, относительная разность осадок , крен и т.п.
Величина Su – предельное значение полученное в результате строительного опыта, наблюдений и т. п. – берётся из норм, для принципиально новых зданий и сооружений назначается проектировщиками.
Проверка по II-му предельному состоянию и оценка согласно его критериев обязательны, кроме:
- под S подразумевается конечная стабилизирующаяся со временем деформация, однако расчёт по деформациям можно не делать , если давление под подошвой не превышает расчётного сопротивления (P< R0), а сжимаемость грунтов в пределах здания , сооружения изменяется в ограниченных пределах.
- если инженерно-геологические условия площадки соответствуют области применения типового проекта.

12.$$$Сваи. Классификация свай: материалы, конструкций, способ изготовления, область применения. Методы устройства свай: забивка, вибропогружение, вдавливание, завинчивание. Оборудование для погружения свай. -153

Свайный фундамент состоит из свай и ростверка.
Назначение свай – воспринимать давление сооружения и передавать их на более плотные грунты основания. В общем случае свая – это стержень, находящийся в грунте в вертикальном или наклонном положении. Служат для передачи нагрузки на основание за счет нижнего конца и боковой поверхности. Достоинства:
-высокая несущая способность
- индустриальность
- сокращение земляных и водопогружательных работ
- снижение осадок и неравномерностей
- повышение устойчивости при действии наклонных и горизонтальных нагрузок
Классификация свай:
1. в зависимости от характера работы сваи в грунте:
- сваи-стойки. Конец сваи опирается на несжимаемое основание (скальное, плотные пески, пылевато-глинистые грунты твердой консистенции, JL<0 – показатель текучести)
- висячие сваи
2. по расположению ростверка по отношению к земной поверхности.
- с низким ростверком
- с высоким ростверком
3. по расположению свай относительно вертикали
- вертикальные
- наклонные
- козловые
4. по способу погружения и возведения
- забивные
- набивные (выполняются на строительной площадке в скважинах)
- винтовые
5 по форме поперечного сечения
- с полостью
- трубчатые
6 в зависимости от профиля продольного сечения
а. постоянного круглого или призматического
б. переменного поперечного сечения по высоте
в. с уширение ствола
- на нижнем конце
- по середине сваи
- в верхнем конце сваи
7. по материалу сваи
- ж/б
- деревянные
- металлические
- комбинированные
- грунтовые (как искусственное основание)

Сваи погружают в грунт забивкой, вибрацией, завинчиванием и ударом с подмывом струей воды. Забивают сваи с помощью сваебойной установки, состоящей из свайного молота и копра, монтируемого в качестве навесного оборудования на тракторе или экскаваторе. Свайные молоты подразделяют на механические, паровоздушные, дизель-молоты и электрические — вибропогружатели и вибромолоты.

13.$$$Буронабивные сваи, технология производства работы, применяемое оборудование. -154

Буровые сваи используются при больших сосредоточенных вертикальных и горизонтальных нагрузках, на строительных площадках со сложными геологическими и инженерными условиями. Очень важным плюсом буровых свай является их малошумность. Основные преимущества буронабивных свай: не нужно доставлять и хранить большое количество свай, заводского изготовления, безопасно для близлежащих построек, высокая несущая способность буровых свай, не надо вывозить грунт со стройплощадки, высокая производительность.
Бурение скважин ведется с применением инвентарных обсадных труб длиной от 1 до 3 метров, либо без обсадных труб с использованием проходного шнека. В нижнем фланце первой секции обсадной трубы установлен режущий наконечник. В процессе бурения совершаются непрерывные возвратно-вращательные движения обсадной трубы. Типа грунта определяет вид бурового инструмента для устройства буронабивных свай (буровых). По окончании бурения скважины устанавливается арматурный каркас, затем производится заполнение скважины бетоном при помощи инвентарных бетонолитных труб, извлекаются обсадные трубы.
Буронабивные сваи с применением обсадных труб.
После бурения скважины в нее помещается свайный каркас в виде трубы. Обсадная труба позволяет: перекрывать горизонты плывунных грунтов; обеспечивает безопасность ведения свайных работ; позволяет контролировать параметры буровой скважины; обеспечивает высокое качество заполнения скважины бетоном.
Данная технология позволяет изготавливать сваи с уширением до 1200 мм, что дает возможность использовать несущую способность опорной толщи грунтов основания и увеличивает эффективность применения свай.
Буронабивные сваи , устраиваемые по технологии проходных шнеков.
Конструкции проходных шнеков оснащены породоразрушающим инструментом с теряемым башмаком. Технология постановки свай бурением с использованием проходных шнеков обеспечивает сооружение свай без ударов и вибраций, что особенно важно при изготовлении свай вблизи существующих зданий и сооружений. При погружении шнек уплотняет стенки скважины, а выход выбуренного грунта не превышает 30-40% от объема скважины. Достоинством этой технологии является отсутствие «мокрого» процесса — глинистый раствор не нужен. Сваи заполня

Наши рекомендации