Генеральная и выборочная совокупность. Способы отбора. Статическая функция распределения. Статические оценки параметров распределения.
Определим основные понятия математической статистики.
Генеральная совокупность– все множество имеющихся объектов.
Выборка – набор объектов, случайно отобранных из генеральной совокупности.
Объем генеральной совокупности N и объем выборки n – число объектов в рассматривае-мой совокупности.
Виды выборки:
Повторная – каждый отобранный объект перед выбором следующего возвращается в генеральную совокупность;
Бесповторная – отобранный объект в генеральную совокупность не возвращается.
Замечание. Для того, чтобы по исследованию выборки можно было сделать выводы о поведе-нии интересующего нас признака генеральной совокупности, нужно, чтобы выборка правиль-но представляла пропорции генеральной совокупности, то есть была репрезентативной(представительной). Учитывая закон больших чисел, можно утверждать, что это условие выполняется, если каждый объект выбран случайно, причем для любого объекта вероятность попасть в выборку одинакова.
Первичная обработка результатов.
Пусть интересующая нас случайная величина Х принимает в выборке значение х1 п1 раз, х2 – п2 раз, …, хк – пк раз, причем где п – объем выборки. Тогда наблюдаемые значения случайной величины х1, х2,…, хк называют вариантами, а п1, п2,…, пк – частотами. Если разделить каждую частоту на объем выборки, то получим относительные частоты Последовательность вариант, записанных в порядке возрастания, называют вариационнымрядом, а перечень вариант и соответствующих им частот или относительных частот – стати-стическим рядом:
xi | x1 | x2 | … | xk |
ni | n1 | n2 | … | nk |
wi | w1 | w2 | … | wk |
Если исследуется некоторый непрерывный признак, то вариационный ряд может состоять из очень большого количества чисел. В этом случае удобнее использовать группированную выборку. Для ее получения интервал, в котором заключены все наблюдаемые значения признака, разбивают на несколько равных частичных интервалов длиной h, а затем находят для каждого частичного интервала ni – сумму частот вариант, попавших в i-й интервал. Составленная по этим результатам таблица называется группированным статистическим рядом:
Номера интервалов | … | k | ||
Границы интервалов | (a, a + h) | (a + h, a + 2h) | … | (b – h, b) |
Сумма частот вариант, попав- ших в интервал | n1 | n2 | … | nk |
Распределение функции.
Для наглядного представления о поведении исследуемой случайной величины в выборке можно строить различные графики. Один из них – полигон частот: ломаная, отрезки которой соединяют точки с координатами (x1, n1), (x2, n2),…, (xk, nk), где xi откладываются на оси абсцисс, а ni – на оси ординат. Если на оси ординат откладывать не абсолютные (ni), а относительные (wi) частоты, то получим полигон
рис.1
относительных частот (рис.1).
По аналогии с функцией распределения случайной величины можно задать некоторую функцию, относительную частоту события X < x.
Выборочной (эмпирической) функцией распределения называют функцию F*(x), определяющую для каждого значения х относительную частоту события X < x. Таким образом,
, (15.1)
где пх – число вариант, меньших х, п – объем выборки.
Замечание. В отличие от эмпирической функции распределения, найденной опытным путем, функцию распределения F(x) генеральной совокупности называют теоретической функцией распределения. F(x) определяет вероятность события X < x, а F*(x) – его относительную частоту. При достаточно больших п, как следует из теоремы Бернулли, F*(x) стремится по вероятности к F(x).
Из определения эмпирической функции распределения видно, что ее свойства совпадают со свойствами F(x), а именно:
1) 0 ≤ F*(x) ≤ 1.
2) F*(x) – неубывающая функция.
3) Если х1 – наименьшая варианта, то F*(x) = 0 при х≤ х1; если хк – наибольшая варианта, то F*(x) = 1 при х > хк .
Для непрерывного признака графической иллюстрацией служит гистограмма, то есть ступенчатая фигура, состоящая из прямоугольников, основаниями которых служат частичные интервалы длиной h, а высотами – отрезки длиной ni /h (гистограмма частот) или wi /h (гистограмма относительных частот). В первом случае площадь гистограммы равна объему выборки, во втором – единице Рис.2.
24. Доверительный интервал для математического ожидания нормального распределения при известном и неизвестном распределении. Коэффициент Стьюдента.