Методика изучения геометрического материала

Одной из о с н о в н ы х задач изучения геометрического материала в школе VIII вида является развитие и формирование геометрических представлений, понятии о плоскостной и объемной фигурах, классификации фигур, их свойствах, длине, площа­ди, объеме и единицах их измерения. В связи с этим необходимо познакомить учащихся с измерительными и чертежными инструментами (линейкой, циркулем, чертежным треугольником, рулет­кой, транспортиром) и выработать прочные навыки работы с ними. Следует также развивать умения решать практические зада­чи, применяя геометрические знания и умения.

В процессе изучения геометрического материала у учащихся развиваются наблюдательность, внимание, способность абстраги­роваться от конкретных свойств предметов (кроме формы). Они учатся сравнивать, дифференцировать, классифицировать геометрические фигуры. У детей развивается способность к логическому мышлению, к анализу и синтезу, к обобщениям, формируется умственная деятельность. Речь школьников обогащается специфи­ческими геометрическими терминами, выражениями, расширяется и активизируется словарь.

Овладение навыками измерения, черчения, работы с измерительными и чертежными инструментами совершенствует моторику, развивает самостоятельность, уверенность учащихся.

Решению задач обучения наглядной геометрии и преодолению трудностей в изучении геометрического материала у учащихся во многом способствует правильная организация и методика преподавания.

Изучение геометрического материала в школе VIII вида должно быть наглядными действенным. Формирование пространственных и геометрических представлений у учащихся возможно только через непосредственное восприятие ими конкретных предметов окружающей действительности, материальных моделей геометрических образов. Только от них можно переходить к использованию чертежей, графиков и т. д.

Все это требует от учителя широкого оснащения уроков гео­метрии наглядным материалом. В качестве наглядных средств используются модели геометрических фигур, тел, изготовленные из цветного картона или плотной бумаги, дерева, пластмассы и дру­гих материалов (многоугольники, углы, круги и окружности, параллелепипеды, пирамиды, конусы, цилиндры, шары и Т. д.), пла­каты с изображением фигур, реальные конкретные предметы, ко­торые по форме тождественны или имеют сходство с изучаемыми геометрическими фигурами, чертежи всех геометрических фигур, тел, единицы измерения длины, площади, объема (там, где воз­можно, в натуральную величину), таблицы соотношения этих мер, единицы измерения площадей и объемов геометрических фигур, наборы игр (геометрические мозаики, домино, лото, строительные конструкторы), диафильмы, кодоскопы и др. ТСО.

Преподавание элементов геометрии невозможно сделать дейст­венным, если учащиеся только наблюдают работу учителя или одного из товарищей с наглядными пособиями. Каждый ученик должен на уроке математики работать с раздаточным геометрическим материалом. Поэтому наборы раздаточного дидактического материала должны находиться и у учащихся, и у учителя. Наряду с геометрическими фигурами в качестве раздаточного материала используются полоски бумаги, палочки разной длины, пластилин.

При изучении геометрического материала широко применяются также измерительные и чертежные инструменты (как классные, таки индивидуальные): линейка, рулетка, циркуль, чертежный треугольник, транспортир. При изучении отдельных тем полезно использовать модель раздвижного угла, треугольника, модели единиц измерения площади и объема и др.

Выбор методов и приемов, применяемых при изучении геометрического материала, должен определяться характером изучаемо­го материала, индивидуальными возможностями умственно отста­лых детей и задачами учебно-воспитательного процесса в коррекционной школе VIII вида.

При формировании геометрических представлений, выработке измерительных и чертежных умений широкое применение находят предметно-практическая деятельность школьников, комментирование этой деятельности, методы наблюдений, демонстрации, ла6оратор­но-практические работы в сочетании с беседой и объяснением.

В младших классах (0, 1, 2) усилия учителя направлены на то, чтобы формировать у учащихся о6разы геометрических фигур. Он достигает этого путем организации многократных н а б л ю д е н и й с учениками моделей геометрических фигур (круга, квадрата, тре­угольника, любого прямоугольника, шара, куба, бруса), изготовленных из разных материалов, разного цвета и массы, различного положения в пространстве. Учащиеся не только наблюдают эти фигуры, но и выполняют сними разнообразные практические работы: обводят, раскрашивают, заштриховывают, лепят, производят аппликационные работы, моделируют их из палочек, полосок бумаги, вырезают из картона, плотной бумаги. Они знакомятся с названиями геометрических фигур и тел, рассматривают окружающие вещи, узнавая в них геометрические фигуры. Напри­мер, тетрадь имеет форму прямоугольника, фрамуга - квадрата, флажок - треугольника, дно стакана - круга, мяч - шара и т. д. Дети сами приводят примеры предметов, имеющих форму тех или иных геометрических фигур. Постепенно они учатся вы­членять знакомые геометрические фигуры на рисунках из знакомых геометрических форм, они конструируют игрушки.

Учитель школы VIII вида, знакомя учащихся с образом угла, по­казывает модель угла и выделяет угол не только на геометрических фигурах (прямоугольнике, его частном виде - квадрате, треуголь­нике), но и на окружающих вещах (угол стола, угол доски, угол книги, угол тетради и т. д. ). Демонстрируя прямую, кривую, отре­зок, также необходимо учить школьников выделять, находить эти геометрические фигуры на предметах, т. е. не только начертить кри­вую линию на доске и в тетрадях, но одновременно и продемонстри­ровать кривую на веревке (если веревку держать за концы и не на­тягивать). Примером кривой линии могут быть обруч, кольцо, буб­лик, край тарелки и т. д. После этого сами учащиеся приводят при­меры кривых линий на окружающих их вещах. Постепенно школь­ники с нарушением интеллекта приобретают способность отвлекать­ся от конкретных свойств материальных предметов, у них формируются геометрические представления.

В этот период большое внимание следует уделить дидактическим играм, с помощью которых учащиеся лучше запоминают о6разы геометрических фигур и тел, их названия, соотносят название с соответствующим образом геометрической фигуры. Рекомендуется широко использовать игры «Геометрическое лото», «Геометрическое домино», «Подбери такую же фигуру», «Покажи фигуру, на которую похожа эта игрушка», «Угадай, что спрятано в мешочке» и др. Полезны также слуховые и зрительные диктан­ты. С их помощью учащиеся учатся различать геометрические фигуры, запоминают их названия. Игры развивают и их пространственные представления (закрепляются отношения взаимного положения предметов, фигур, выраженные словами вверху, внизу, слева, справа, впереди, сзади, посередине, между, около, над, под, первый, последний и т. д.). Приведем пример слухового дик­танта, который учащиеся выполняют на листе белой бумаги с моделями фигур.

У ч и т е л ь. Положите в середину листа круг, сверху, над кругом, положите квадрат, снизу, под кругом, положите треугольник, слева от круга - прямоугольник, а справа - круг (1-2-е классы).

Учащиеся выполняют. Затем идет проверка: дети должны рас­сказать, как расположены фигуры относительно круга.

Начиная со 2-го класса учащиеся знакомятся с элементами геометрических фигур, с образами и названиями которых они уже познакомились в 1-м классе. Второклассники вычленяют углы, стороны, вершины, подсчитывают их количество.

В 3-м классе учащиеся узнают, что многоугольники получают свое название в зависимости от количества углов: треугольник, четырехугольник, пятиугольник и т. д. В этом же классе учащиеся знакомятся экспериментальным путем со свойствами геометрических фигур (квадрата, любого прямоугольника, треугольника и др.).

Учитывая несовершенство мыслительных процессов анализа и синтеза у умственно отсталых детей, следует помочь им создать, план анализа элементов геометрической фигуры и их свойств: а) число углов и их виды; 6) число сторон и их свойства; в) число вершин; г) название фигуры.

В старших классах, кроме умения выделить, подсчитать число элементов геометрической фигуры или тела, от учащихся требуется описать основные свойства их элементов (равенство всех сто­рон и всех углов квадрата, равенство противоположных сторон и всех углов в прямоугольнике и т. д.). Пользуясь такой схемой, учащиеся запоминают ее, и им уже не требуется задавать дополнительных вопросов. В старших классах учащиеся должны уметь называть линии, которые можно привести в фигуре (радиус, хорду, диаметр, высоту и т. д.).

При целенаправленно организованных наблюдениях ученики способны подметить также общие признаки, т. е. существенные свойства фигур, и отвлечься от несущественных. Например, для треугольника существенным признаком является наличие трех углов (сторон, вершин), несущественным - длина сторон, поло­жение, материал; для угла существенным признаком является наличие двух лучей, которые исходят из одной точки – вершины угла, а несущественным - направление лучей, длина. Очень важно при изучении геометрических фигур в а р ь и р о ­в а т ь несущественные признаки геометрических фигур, подчеркивая при этом, что существенные признаки остаются неиз­менными. Например, при изучении свойств квадрата с учащимися проводится ла6ораторно-практическая работа, которая состоит в следующем. Каждый ученик получает квадрат; учитель обращает внимание детей на то, что каждый из них получил разные по цвету, размеру, изготовленные из разного материала четырех­угольники; учащимся предлагается измеришь все углы четырех­угольника (квадрата); устанавливается, что, несмотря на то что у всех квадраты разные, углы всех фигур прямые. Далее учитель про­сит измеришь стороны. Учащиеся убеждаются, что стороны одного и того же квадрата равны. Далее учитель показывает квадраты раз­ных цветов (желтые, зеленые и т. д.), разного размера (большие и маленькие), изготовленные из разных материалов (деревянные, пластмассовые и т. д.), в разном положении и обращает внимание на то, что все несущественные признаки не влияют на основные свойства фигуры. Однако, если изменить хотя 6ы один существен­ный признак в квадрате (и в любой другой фигуре), то получится уже другая фигура. На модели квадрата, сделанной из палочек оди­наковой длины, учащиеся пытаются изменить существенные при­знаки, например длину одной или двух сторон, величину углов. По­лучается уже новая фигура. Различные упражнения по моделирова­нию фигур из палочек, полосок бумаги помогают учащимся лучше усвоить основные свойства фигур, понять существенные признаки, которые лежат в основе определения фигур.

Полезно сначала давать упражнения и задания практического характера, а потом по представлению. Например, предложить учащимся из палочек смоделировать прямоугольник и выполнить такие операции: «Сделайте острым один из углов прямоугольника. Какая фигура получилась? Почему эту фигуру нельзя назвать прямоугольником? Уменьшите основания прямоугольника, сделайте их равными боковым сторонам. Какая фигура получилась? По­чему?». Еще пример. Возьмите модель раздвижного треугольника (остроугольного) и измените угол в остроугольном треугольнике так, чтобы он стал прямоугольным (тупоугольным). После этого учитель может спросить учеников, опираясь только на их воображение, как при изменении того или иного признака изменилась фигура. Например: «Если в равностороннем треугольнике удлинить (укоротить) одну сторону, то какой треугольник получится?»

Важно, чтобы и сами учащиеся, особенно в старших классах, упражнялись в варьировании несущественных признаков при по­стоянстве существенных признаков и приводили примеры, когда изменение существенных признаков приводит к видоизменению фигуры. В этих случаях полезны упражнения с моделями фигур, выполненными из проволоки. На них можно быстро изменить величину угла, размеры сторон. Учащиеся смогут наблюдать, как изменения свойств элементов фигуры отражаются на фигуре в целом. Полезны практические упражнения с палочками на до­страивание фигур, например такие: «Три палочки образуют часть фигуры; что нужно сделать, чтобы получился квадрат (прямоугольник)? Какую фигуру можно построить из одной, двух, трех, четырех, пяти палочек?» И т. д.

Весьма полезно и в младших, и в старших классах моделирование из геометрических фигур различных предметов, например домика, машины, флага, елочки, вертолета, тележки и человечка, лесенку, Буратино и т. д. Дети делят геометрические фигуры линиями на части, разрезают, а потом конструируют знакомые геометрические фигуры. Необходимо работать и с конструктором.

Эта работа развивает Воображение, смекалку, формирует геометрические представления, совершенствует и развивает пространст­венные представления.

Известно, что в соответствии с требованиями программы, начи­ная с 4-5-го класса, учащиеся знакомятся с буквенной символи­кой. Они обозначают буквами отрезки, углы, стороны фигур. Введение буквенной символики не только помогает различать фигуры и их элементы, но и является одним из средств формирования обобщений, сравнений. Учащиеся сравнивают с помощью буквенных символов отрезки, углы, устанавливая между ними отноше­ния равенства и неравенства. Например, L АВС < 90°. Это нера­венство показывает, что угол АВС может быть любым углом, мень­шим по величине 90°, т. е. любым острым углом. Здесь же присутствует и элемент обобщения. Одним из ведущих приемов при изучении геометрического ма­териала в школе VIII вида является сравнение и сопоставление.

Этими приемами пользуются учитель и учащиеся младших классов при изучении геометрического материала. Использование этих приемов позволяет вычленить нужную фигуру из множества других. С помощью этих приемов можно находить признаки сходства и различия геометрических фигур и тел, различать линии (пря­мую, кривую, ломаную) и величины (длину, площадь, объем), единицы их измерения и т. д. Без использования определений дети учатся отличать квадрат от л ю6ого прямоугольника.

Использованию приема сравнения учащихся надо учить. С этой целью можно снова прибегнуть к составлению определенного ал­горитма сравнения фигур. Например, при сравнении сходных и слабо дифференцируемых фигур (прямоугольника и любого парал­лелограмма) учащимся можно предложить такую схему: 1) вид многоугольника; 2) стороны, их число и свойства сторон; 3) углы, их число и свойства углов; 4) диагонали, их число и свойство диагоналей; 5) высоты.

Характеризуя элементы фигур, их свойства, учащиеся должны назвать признак сходства или различия. Например: «У прямо­угольника и параллелограмма по четыре стороны, противополож­ные стороны этих фигур равны и параллельны. В этом сходство прямоугольника и любого параллелограмма. У прямоугольника и любого параллелограмма по четыре угла. В этом сходство фигур. У прямоугольника все углы прямые, у любого параллелограмма два противоположных угла тупые, а два других - острые. В этом различие прямоугольника и любого параллелограмма».

Сравнение используется для дифференциации сходных фигур, для сопоставления и противопоставления видов одной и той же фигуры, например углов, треугольников.

Большое значение при изучении геометрического материала имеет лабораторно-практический метод. С помощью этого метода учащихся можно подвести к определенным выводам и обобщени­ям. Этот метод может быть использован, например, для того, чтобы дать учащимся знания о сумме углов в треугольнике. Учи­тель предлагает начертить произвольный треугольник или взять модель готового треугольника. Ученики измеряют с помощью транспортира углы треугольника и находят их сумму. После практической работы каждый учащийся называет сумму углов треугольника. Сумма углов треугольника равна 180. У всех учеников были разные треугольники. Ученики на основании практической работы приходят к выводу, к формулировке правила. Этот путь познания называется индуктивным путем. От частного, конкретного учащиеся приходят к общему. Индуктивный путь часто используется при знакомстве учащихся с новым материалом как в младших, так и в старших классах школы VIII вида.

Однако в старших классах следует использовать и дедуктивный путь познания. Он заключается в переходе от общего, абстрактно­го к частному, конкретному. Например, учащимся можно сообщить правило суммы углов треугольника. Практическое измерение углов и нахождение их суммы служит подтверждением достоверности этого правила. Решение задач на нахождение одного из углов треугольника по данным величинам двух других углов дает возможность применить это данное в готовом виде правило. Другой пример. Чтобы опре­делить периметр той или иной геометрической фигуры, нужно знать, что периметр - это сумма длин сторон той или иной фигуры. Это общее правило учащиеся должны уметь использовать при вычислении периметра любой конкретной фигуры. Подведение частного факта под общее правило представляет зна­чительную трудность для учащихся с нарушением интеллекта. Преодолению этой трудности способствует требование учителя приводить примеры самим, де гать зарисовки, чертежи, подбирать нагляд­ный материал для иллюстрации того или иного правила, свойства.

Обучение учащихся элементам геометрии невозможно себе представить без систематической работы, обеспечиваю щей формирование навыков использования измерительных и чертежных инструментов, построения геометрических фигур, умения описывать процессы и резуль­таты работ. Важным условием реализации этой системы является сознательное выполнение учащимися необходимых действий. В последующем эти действия приобретают автоматизированный характер.

Учитель должен хорошо понимать, что выработка любого практического умения у школьника с нарушением интеллекта сопря­жена с огромной затратой усилий со стороны о6учающего и обу­чаемого. Автоматизация навыков требует систематических (еже­дневных) упражнений не только на уроках математики, но и во время занятий другими учебными предметами.

У большинства учащихся с интеллектуальным недоразвитием отмечается несовершенство моторики, обусловленное стертыми компенсированными паретическими состояниями, а нередко и яв­ными физическими недостатками (параличи, парезы, треморы рук). Это сказывается, например, в том, что ученики испытывают значительные трудности при необходимости овладеть навыками работы с измерительными и чертежными инструментами.

Учитель школы VIII вида буквально с 1 го класса должен терпеливо, настойчиво и систематически формировать у учащихся умение работать с инструментами. Например, учащиеся 1-го класса чертят произвольные прямые, затем учатся проводить с помо­щью линейки прямую через одну (две) точку, соединять точки, измерять. Учащиеся 2-го класса знакомятся с сантиметром, учатся измерять отрезки заданной длины оцифрованной линейкой.

Учитель должен показать, как держать линейку, как приложить ее к измеряемому объекту, от какого деления производить измерение линейкой. Здесь недостаточно однократно фронтально показать приемы работы. Нужно к каждому ребенку подойти ин­дивидуально, взять (буквально) его руки в свои и учить правильно держать линейку, учить вычерчивать отрезки заданной длины.

Во 2-м классе навыки работы с линейкой совершенствуются, учитель предъявляет требования к качеству чертежей. Учащиеся учатся чертить с помощью линейки по вершинам (точкам) геомет­рические фигуры (квадрат, прямоугольник, треугольник); с помо­щью чертежного треугольника они учатся чертить углы. Постепен­но учащиеся овладевают важным умением описывать выполнен­ную работу.

На последующих годах обучения учитель должен повышать требования к качеству выполняемых работ по черчению и точнос­ти построения. Например, уже в 4-м классе учащиеся выполняют построение фигур по заданным размерам в миллиметрах. Форми­рование прочных навыков измерения и построения фигур подго­тавливает учащихся к занятиям профессиональным трудом, способствует более успешному овладению трудовыми навыками. Формирование измерительных и чертежных навыков осуществляется в определенной последовательности (поэтапно): показ действия учителем с комментированием его выполнения; выполнение этого действия учеником совместно с учителем или под его руководством; громкое проговаривание учеником приемов выполнения действия; самостоятельное выполнение действия учеником (учитель кон­тролирует его правильность); объяснение приемов работы с помощью наводящих вопросов; автоматизация навыка путем многократного повторения дейст­вия; умение самостоятельно объяснить приемы работы. Выполнение измерительных и чертежных работ необходимо связывать с закреплением теоретических знаний. Этой цели служат задания, связанные с построением фигур, равных данным. Так, например, учащимся может быть предложено построить параллелограмм, равный данному (предъявляется либо чертеж, либо модель аналогичной фигуры). Выполнение такого рода заданий возможно при актуализации всех теоретических знаний о данной фигуре. Учащиеся должны четко представить себе необходимые и достаточные для построения фигуры данные, уметь снять нужные размеры. Должна быть четкая согласованность ре­чевой и предметно-практической деятельности. Такого характера задания могут выполнять учащиеся с легкой формой умственной отсталости, которым доступен I уровень усвоения программных требований по математике.

Формированию и развитию геометрических и пространственных представлений существенно содействует решение задач геометрического содержания. Это задачи, связанные с разного рода моделированием геометрических фигур, вычленением их на заданном чертеже, рисунке, предмете. Это деление фигуры с помощью точек, отрезков и построение новых фигур. Это задачи на измерение отрезков, площадей, поверхностей и объемов фигур.

Это также задачи на построение фигур с помощью линейки, циркуля, треугольника без учета размеров и с заданными параметрами, задачи на классификацию фигур, задачи, связанные с формированием навыков чтения чертежей, использованием буквенной символики.

Уже в 1-м классе учащиеся должны научиться вычленять прямоугольники из ряда геометрических фигур по внешним признакам (по образцу) и по названию. Они должны уметь найти форму пря­моугольника в окружающих их предметах.

Во 2-м классе учащиеся решают задачи на моделирование из палочек, полосок бумаги, строят прямоугольник по заданным вершинам (точкам) с помощью линейки.

В 3-4-к классах ученики решают задачи на построение прямоугольников с помощью линейки и треугольника по заданным размерам сторон, решают задачи на измерение сторон прямоугольника, трансформацию прямоугольника в другую фигуру (квадрат, произвольный четырехугольник) путем изменения положения па­лочек и выбора палочек другой длины.

Учащимся 5-6-х классов можно предложить решать новые виды геометрических задач: деление прямоугольника с помощью диагона­лей на треугольники, деление прямоугольника на части, в том числе на равные части, составление прямоугольника из других фигур (два равных прямоугольных треугольника образуют прямоугольник). В 5-м классе предусматривается обозначение прямоугольника буквами и чтение чертежа с буквенной символикой, запись заданных сторон и углов прямоугольника с помощью буквенной символики (например, даны: АВ=ВС=10 см, АВ=СВ=5 см. Построить прямоугольник).

В 7-8-х классах ученики решают задачи на вычисление пло­щади прямоугольников, а также обратные задачи: определяют основание (боковую сторону) по заданной площади и длине боковой стороны (основанию).

Особое внимание при изучении геометрического материала в младших и старших классах учитель обращает на обогащение словаря учащихся специальными терминами, новыми словами и выражениями. Необходимо работать над тем, чтобы за каждым словом и термином стоял конкретный образ, чтобы учащиеся чаще включали в свой активный словарь новые слова, геометрические термины. Этому способствует составление специальных геометрических словариков, использование плакатов с новыми для учащихся словами. Большое значение в этом плане имеют упражнения в написании этих слов на уроках математики и русского языка.

Учитывая присущую учащимся с нарушением интеллекта сла­бость фонематического анализа, следует особенно тщательно диф­ференцировать сходные по звучанию термины, а также фигуры, которые они обозначают, например параллелограмм и параллелепипед, прямоугольник и прямоугольный треугольник, тупой угол и тупоугольный треугольник и т. д. Одновременно с называнием фигур учащиеся должны их показывать. Кроме того, им предлагается устанавливать признаки сходства и различия этих фигур. Полезно предлагать учащимся производить систематическое опи­сание свойств фигур. Это позволяет активизировать специальный словарь учащихся, а также упорядочить их знания.

Формулирование правил, определений всегда вызывает у уча­щихся с интеллектуальным недоразвитием большие трудности. В этой связи к учащимся следует подходить дифференцированно. От некоторых учащихся нельзя требовать точного формулирования правила, определения. Можно просто попросить рассказать об объекте, например: «Расскажи все, что ты знаешь о квадрате».

Если ученик не называет всех существенных признаков фигуры, учитель ставит наводящие вопросы. Заучивание определений не­редко приводит к формальному усвоению знаний.

Уже в 1-м классе при изучении чисел первого десятка и при знакомстве с образами геометрических фигур учитель может ши­роко использовать эти фигуры в качестве счетного дидактического материала. Во 2-м классе, когда учащиеся смогут различать элементы фигур и моделировать их из палочек, в качестве счетного материала можно использовать не только фигуры, но и их элементы.

Например, во 2-м классе учащиеся получают представление о сантиметре как единице измерения длины, знакомятся с измерени­ем отрезков в сантиметрах. Значит, полоску длиной 10 см, разделенную на 10 равных частей, можно использовать в качестве пособия для формирования представлений о натуральном числе и части натурального ряда чисел (числовой луч). Масштабные линейки в 20 см (2-й класс), а затем и в 100 см (3-й класс) также могут быть использованы в качестве пособий при формировании представлений о натуральных числах и числовом луче в пределах 20 и 100.

Во время работы над долями единицы, дробями широко исполь­зуются геометрические фигуры - круг, квадрат, прямоугольник, отрезок, шар, куб. Геометрическая фигура принимается за единицу и делится на равные части, каждая из которых - доля, а одна или несколько долей образует дробь.

При решении арифметических задач геометрические фигуры служат средством наглядности при демонстрации зависимости между данными, а также между данными и искомой величинами. С помощью геометрических фигур составляются схемы, графики, диаграммы, иллюстрирующие содержание математических задач.

При изучении геометрических величин (длина, площадь, объем) геометрические фигуры становятся объектами измерении. Определяется длина отрезков, сторон многоугольников, ребер геометрических тел.

Учащиеся убеждаются в том, что длина отрезка - это число, полученное от укладывания единичного отрезка (1 мм, 1 см, 1 дм, 1 м, 1 км) или произвольного отрезка в данном. Вычисляются площади и объемы фигур с помощью единичного квадрата, принятого за единицу измерения площади (число единичных квадратов, которое уложится в данной фигуре, есть площадь фигуры), и единичного куба, принятого за единицу объема (число единичных кубов, которое уложилось в данном геометрическом теле, есть объем этого тела). Учащиеся должны приобрести значительный опыт в вычислении длины, площади, объема с помощью единиц мер.

Как вычислять длину, площадь, объем, лучше всего показать на одной единице мер (1 см, 1 см2, 1 см3). После этого можно постепенно знакомить учащихся с другими единицами измерения их соотношением. В этом случае учащиеся без особого труда осуществляют перенос полученных знаний и навыков на новые единицы измерения.

Изучение геометрического материала должно быть тесно связано с уроками ручного и профессионального труда, рисования, черчения и др. Эта связь заложена в программах школы VIII вида.

От учителя требуется умение реализовать эти связи в процессе изучения различных учебных предметов, например использовать элементы геометрии на уроках ручного труда. Учащиеся 1-го клас­са лепят овощи, фрукты, имеющие форму шара (апельсин, яблоко др.), овала (слива, огурец). Лепка предметов заданной формы позволяет использовать прием материализации геометрических знаний (учащиеся узнают форму в конкретном предмете). Работая бумагой, учащиеся закрепляют образ прямой, кривой линии, отрезка. Вычерчивая орнаменты в виде полос из геометрических фигур, а также составляя композиции, дети закрепляют такие образы геометрических фигур: «квадрат», «прямоугольник», «круг» и др.

Эффективность изучения геометрического материала обеспечи­вается правильной организацией его изучения.

В младших классах школы VIII вида на изучение геометричес­кого материала нецелесообразно выделять отдельные уроки или концентрировать этот материал в начале или конце четверти.

Геометрический материал нужно включать в каждый урок матема­тики, тесно связывая его изучение с арифметическим материалом.

Он внесет разнообразие в учебную деятельность, сделает уроки математики более интересными и повысит их практическую на­правленность.

Иногда можно и весь урок посвятить изучению геометрическо­го материала. Например, при изучении темы «Различение тре­угольников по длинам сторон» (3-й класс) можно запланировать целый урок, на котором дети будут заниматься измерением сторон треугольников разных видов. Однако таких уроков в четверти должно быть немного.

Все практические работы по обводке, раскрашиванию, вычер­чиванию фигур учащиеся выполняют в тетрадях по математике.

Для формирования навыков точности измерения и построения фигур по заданным размерам целесообразно проводить работу на нелинованной бумаге. Такие Листы могут быть вклеены в обычную тетрадь по математике.

В старших классах изучению геометрического материала отводится один урок в неделю. Однако опыт показывает, что если изучение геометрического материала сосредоточить только на этих уроках, то это приведет к бессистемности в знаниях. Поэто­му опытные учителя помимо проведения отдельных уроков систе­матически включают геометрический материал в большинство уроков математики небольшими порциями. Особенно это целесообразно делать при решении задач геометрического содержания. В старших классах учащимся предлагается завести специальные тетради по геометрии с вклеенными в них нелинованными листами бумаги. В этих тетрадях они выполняют графические и чертежные работы, решают задачи.

При подготовке урока учитель определяет тему, четко форму­лирует образовательную цель урока, продумывает коррекционно-развивающие, воспитательные и практические задачи. Он заранее готовит наглядные пособия, дидактический материал, инструмен­ты для проведения практических работ на доске и в тетрадях. Затем отбирает тот геометрический материал, который надо закрепить или повторить, а также продумывает, какие новые знания надо сообщить учащимся, над выработкой каких измерительных и чертежных умений надо работать, какие виды заданий и практических работ должны выполнить учащиеся самостоятельно.

Далее учитель намечает основные этапы урока, распределяет виды упражнений, задания, практические работы, продумывает, какие методы и приемы будут им использоваться на каждом этапе, намечает, знания каких учеников надо проверить или какие задания дать тому или иному ученику, чтобы преодолеть индиви­дуальные трудности в усвоении геометрического материала. Учи­тель также продумывает дифференцированный подход к разным группам учащихся на каждом этапе урока, с тем чтобы макси­мально использовать возможности каждого ученика. Кроме того, он обдумывает методы и приемы контроля знаний учащихся на каждом этапе, заранее намечает, знания каких учеником будут оценены поурочным баллом в конце урока. Заранее готовится им и дифференцированное задание на дом.

Вопросы и задания

1. Подготовьте сообщение на тему «Задачи и содержание изучения геометрического материала в школе VIII вида».

2. Какие вы знаете наиболее эффективные методы и приемы изучения геометрического материала в младших и старших классах школы VIII вида? 3. Каковы средства изучения наглядной геометрии?

4. Как организуется изучение геометрического материала в младших и старших классах?

5. Составьте конспект урока на одну из тем: «Виды треугольников» (по длине сторон или по величине углов), »Площадь. Единицы измерения площади», «Параллелограмм».

6. Приведите примеры упражнений геометрического содержания, направ­ленных на коррекцию недостатков мыслительной функции сравнения.

СПИСОК РЕКОМЕНДУЕМОЙ ЛИТЕРАТУРЫ

ОСНОВНАЯ

1. Перова М. Н. Методика преподавания математики во вспомогательной школе. - М., 1989.

2. Перова М. Н., Э к В. В. Обучение элементам геометрии во вспомога­тельной школе. - М., 1992.

3. Перова М. Н. Дидактические игры и занимательные упражнения по математике. - М., 1997.

4. Э к В. В. Обучение математике учащихся младших классов вспомогатель­ной школы. - М., 1990.

5. Программы для 0-4-х классов школы VIII вида (для детей с нарушениями интеллекта). - М., 1997.

6. Программы специальных общеобразовательных школ для умственно отста­лых детей. - М., 1991.

7. Учебники математики для учащихся школ VIII вида.

ДОПОЛНИТЕЛЬНАЯ

1. А л ы ш е в а Т. В. Изучение арифметических действий с обыкновенными дробями учащимися вспомогательной школы // Дефектология. - 1992. ‑№ 4.

2. Г о р с к и н Б. Б. Система и методика изучения нумерации многозначных чисел во вспомогательной школе // Дефектология. - 1994. - № 4.

3. Истомина Н. Б. методика преподавания математики в начальных классах. - М., 1992.

4. М а т а с о в Ю. Г. Особенности восприятия и понимания основ наглядной геометрии учениками младших классов вспомогательной школы //Дефекто­логия. - 1972. - № 5.

5. М е н ч и н с к а я Н. А., М о р о М. И. Вопросы методики и психологии обучения арифметике в начальных классах. - М., 1965.

6. М е т л и н а Л. С. Математика в детском саду. - М., 1977.

7. Р о з а н о в а Т. В. Развитие мышления аномальных младших школьников на уроках математики //Дефектология. - 1985. - .№ 3.

8. Ш е и н а И. М. Трудности выполнения умственно отсталыми школьниками вычислительных операций с многозначными числами // Дефектоло­гия. - 1994. –

№ 4.

ОГЛАВЛЕНИЕ

Предисловие. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
  Раздел I ОБЩИЕ ВОПРОСЫ МЕТОДИКИ ОБУЧЕНИЯ МАТЕМАТИКЕ В КОРРЕКЦИОННОЙ ШКОЛЕ VIII ВИДА    
Глава I. Развитие методических основ преподавания математики в коррекционной школе VIII вида . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Глава 2. Задачи обучения математике в коррекционной школе VIII вида. Связь обучения математике с другими учебными предметами, профессиональным трудом . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    
Глава 3. Особенности усвоения математических знаний, умений и навыков учащимися коррекционной школы VIII вида . . . . . . . . . . . . . . . . . . . . . . . .  
Глава 4. Учебная программа по математике в коррекционной школе VIII вида
Глава 5. Методы обучения математике . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Особенности испол<

Наши рекомендации