Интегрирование степенных рядов.
Если некоторая функция f(x) определяется степенным рядом: , то интеграл от этой функции можно записать в виде ряда:
Дифференцирование степенных рядов.
Производная функции, которая определяется степенным рядом, находится по формуле:
Сложение, вычитание, умножение и деление степенных рядов.
Сложение и вычитание степенных рядов сводится к соответствующим операциям с их членами:
Произведение двух степенных рядов выражается формулой:
Коэффициенты сi находятся по формуле:
Делениедвух степенных рядов выражается формулой:
Для определения коэффициентов qn рассматриваем произведение , полученное из записанного выше равенства и решаем систему уравнений:
Разложение функций в степенные ряды.
Разложение функций в степенной ряд имеет большое значение для решения различных задач исследования функций, дифференцирования, интегрирования, решения дифференциальных уравнений, вычисления пределов, вычисления приближенных значений функции.
Возможны различные способы разложения функции в степенной ряд. Такие способы как разложение при помощи рядов Тейлора и Маклорена были рассмотрены ранее. (См. Формула Тейлора. )
Существует также способ разложения в степенной ряд при помощи алгебраического деления. Это – самый простой способ разложения, однако, пригоден он только для разложения в ряд алгебраических дробей.
Пример. Разложить в ряд функцию .
Суть метода алгебраического деления состоит в применении общего правила деления многочленов:
1 1 - x
1 – x 1 + x + x2 + x3 + …
x
x – x2
x2
x2 – x3
x3
……….
Если применить к той же функции формулу Маклорена
,
то получаем:
……………………………….
Итого, получаем:
Рассмотрим способ разложения функции в ряд при помощи интегрирования.
С помощью интегрирования можно разлагать в ряд такую функцию, для которой известно или может быть легко найдено разложение в ряд ее производной.
Находим дифференциал функции и интегрируем его в пределах от 0 до х.
Пример. Разложить в ряд функцию
Разложение в ряд этой функции по формуле Маклорена было рассмотрено выше.
(См. Функция y = ln(1 + x).) Теперь решим эту задачу при помощи интегрирования.
При получаем по приведенной выше формуле:
Разложение в ряд функции может быть легко найдено способом алгебраического деления аналогично рассмотренному выше примеру.
Тогда получаем:
Окончательно получим:
Пример. Разложить в степенной ряд функцию .
Применим разложение в ряд с помощью интегрирования.
Подинтегральная функция может быть разложена в ряд методом алгебраического деления:
1 1 + x2
1 + x2 1 – x2 + x4- …
- x2
- x2 – x4
x4
x4 + x6
………….
Тогда
Окончательно получаем: