Решение линейных однородных систем дифференциальных уравнений с постоянными коэффициентами с помощью матриц (видоизмененный метод Эйлера)

Пусть дана система п линейных дифференциальных уравнений с п неизвестными функциями, коэффициенты которой постоянные:

Решение линейных однородных систем дифференциальных уравнений с постоянными коэффициентами с помощью матриц (видоизмененный метод Эйлера) - student2.ru

Эту систему можно записать в виде одного матричного дифференциального уравнения Решение линейных однородных систем дифференциальных уравнений с постоянными коэффициентами с помощью матриц (видоизмененный метод Эйлера) - student2.ru , где

Решение линейных однородных систем дифференциальных уравнений с постоянными коэффициентами с помощью матриц (видоизмененный метод Эйлера) - student2.ru , Решение линейных однородных систем дифференциальных уравнений с постоянными коэффициентами с помощью матриц (видоизмененный метод Эйлера) - student2.ru , Решение линейных однородных систем дифференциальных уравнений с постоянными коэффициентами с помощью матриц (видоизмененный метод Эйлера) - student2.ru .

Благодаря свойству собственных чисел и собственных векторов матриц Решение линейных однородных систем дифференциальных уравнений с постоянными коэффициентами с помощью матриц (видоизмененный метод Эйлера) - student2.ru ,где Решение линейных однородных систем дифференциальных уравнений с постоянными коэффициентами с помощью матриц (видоизмененный метод Эйлера) - student2.ru -собственные числа ,а Решение линейных однородных систем дифференциальных уравнений с постоянными коэффициентами с помощью матриц (видоизмененный метод Эйлера) - student2.ru - собственные векторы матрицы А, решение системы будем искать в виде Решение линейных однородных систем дифференциальных уравнений с постоянными коэффициентами с помощью матриц (видоизмененный метод Эйлера) - student2.ru , где Решение линейных однородных систем дифференциальных уравнений с постоянными коэффициентами с помощью матриц (видоизмененный метод Эйлера) - student2.ru -произвольные постоянные.

Чтобы найти Решение линейных однородных систем дифференциальных уравнений с постоянными коэффициентами с помощью матриц (видоизмененный метод Эйлера) - student2.ru и Решение линейных однородных систем дифференциальных уравнений с постоянными коэффициентами с помощью матриц (видоизмененный метод Эйлера) - student2.ru Решение линейных однородных систем дифференциальных уравнений с постоянными коэффициентами с помощью матриц (видоизмененный метод Эйлера) - student2.ru решим характеристическое уравнение

Решение линейных однородных систем дифференциальных уравнений с постоянными коэффициентами с помощью матриц (видоизмененный метод Эйлера) - student2.ru ,где

Решение линейных однородных систем дифференциальных уравнений с постоянными коэффициентами с помощью матриц (видоизмененный метод Эйлера) - student2.ru Решение линейных однородных систем дифференциальных уравнений с постоянными коэффициентами с помощью матриц (видоизмененный метод Эйлера) - student2.ru Решение линейных однородных систем дифференциальных уравнений с постоянными коэффициентами с помощью матриц (видоизмененный метод Эйлера) - student2.ru Решение линейных однородных систем дифференциальных уравнений с постоянными коэффициентами с помощью матриц (видоизмененный метод Эйлера) - student2.ru

Решение линейных однородных систем дифференциальных уравнений с постоянными коэффициентами с помощью матриц (видоизмененный метод Эйлера) - student2.ru Решение линейных однородных систем дифференциальных уравнений с постоянными коэффициентами с помощью матриц (видоизмененный метод Эйлера) - student2.ru Решение линейных однородных систем дифференциальных уравнений с постоянными коэффициентами с помощью матриц (видоизмененный метод Эйлера) - student2.ru

Решение линейных однородных систем дифференциальных уравнений с постоянными коэффициентами с помощью матриц (видоизмененный метод Эйлера) - student2.ru

Решая данное уравнение относительно Решение линейных однородных систем дифференциальных уравнений с постоянными коэффициентами с помощью матриц (видоизмененный метод Эйлера) - student2.ru ,получим Решение линейных однородных систем дифференциальных уравнений с постоянными коэффициентами с помощью матриц (видоизмененный метод Эйлера) - student2.ru корней характеристического уравнения Решение линейных однородных систем дифференциальных уравнений с постоянными коэффициентами с помощью матриц (видоизмененный метод Эйлера) - student2.ru ,которые являются собственными числами матрицы А.Каждому собственному числу Решение линейных однородных систем дифференциальных уравнений с постоянными коэффициентами с помощью матриц (видоизмененный метод Эйлера) - student2.ru соответствует собственный вектор Решение линейных однородных систем дифференциальных уравнений с постоянными коэффициентами с помощью матриц (видоизмененный метод Эйлера) - student2.ru .Его координаты найдем из системы уравнений

Решение линейных однородных систем дифференциальных уравнений с постоянными коэффициентами с помощью матриц (видоизмененный метод Эйлера) - student2.ru ;

Решение линейных однородных систем дифференциальных уравнений с постоянными коэффициентами с помощью матриц (видоизмененный метод Эйлера) - student2.ru .

Тогда решение системы запишется в виде:

Решение линейных однородных систем дифференциальных уравнений с постоянными коэффициентами с помощью матриц (видоизмененный метод Эйлера) - student2.ru ; Решение линейных однородных систем дифференциальных уравнений с постоянными коэффициентами с помощью матриц (видоизмененный метод Эйлера) - student2.ru или

Решение линейных однородных систем дифференциальных уравнений с постоянными коэффициентами с помощью матриц (видоизмененный метод Эйлера) - student2.ru Решение линейных однородных систем дифференциальных уравнений с постоянными коэффициентами с помощью матриц (видоизмененный метод Эйлера) - student2.ru

Общее решение системы имеет вид:

Решение линейных однородных систем дифференциальных уравнений с постоянными коэффициентами с помощью матриц (видоизмененный метод Эйлера) - student2.ru ,

Оно может быть записано иначе

Решение линейных однородных систем дифференциальных уравнений с постоянными коэффициентами с помощью матриц (видоизмененный метод Эйлера) - student2.ru ,

где Решение линейных однородных систем дифференциальных уравнений с постоянными коэффициентами с помощью матриц (видоизмененный метод Эйлера) - student2.ru - фундаментальная система решений.

Пример 13.3.Найти общее решение системы уравнений

Решение линейных однородных систем дифференциальных уравнений с постоянными коэффициентами с помощью матриц (видоизмененный метод Эйлера) - student2.ru

Составим характеристическое уравнение матрицы системы

Решение линейных однородных систем дифференциальных уравнений с постоянными коэффициентами с помощью матриц (видоизмененный метод Эйлера) - student2.ru ; Решение линейных однородных систем дифференциальных уравнений с постоянными коэффициентами с помощью матриц (видоизмененный метод Эйлера) - student2.ru или Решение линейных однородных систем дифференциальных уравнений с постоянными коэффициентами с помощью матриц (видоизмененный метод Эйлера) - student2.ru

Его корни Решение линейных однородных систем дифференциальных уравнений с постоянными коэффициентами с помощью матриц (видоизмененный метод Эйлера) - student2.ru Решение линейных однородных систем дифференциальных уравнений с постоянными коэффициентами с помощью матриц (видоизмененный метод Эйлера) - student2.ru -собственные ( или характеристические) числа матрицы.

При Решение линейных однородных систем дифференциальных уравнений с постоянными коэффициентами с помощью матриц (видоизмененный метод Эйлера) - student2.ru уравнения для определения собственного вектора имеют вид Решение линейных однородных систем дифференциальных уравнений с постоянными коэффициентами с помощью матриц (видоизмененный метод Эйлера) - student2.ru и сводятся кодному уравнению Решение линейных однородных систем дифференциальных уравнений с постоянными коэффициентами с помощью матриц (видоизмененный метод Эйлера) - student2.ru .

Последнее определяет вектор Решение линейных однородных систем дифференциальных уравнений с постоянными коэффициентами с помощью матриц (видоизмененный метод Эйлера) - student2.ru

При Решение линейных однородных систем дифференциальных уравнений с постоянными коэффициентами с помощью матриц (видоизмененный метод Эйлера) - student2.ru получаем уравнения Решение линейных однородных систем дифференциальных уравнений с постоянными коэффициентами с помощью матриц (видоизмененный метод Эйлера) - student2.ru или Решение линейных однородных систем дифференциальных уравнений с постоянными коэффициентами с помощью матриц (видоизмененный метод Эйлера) - student2.ru . Это уравнение определяет вектор Решение линейных однородных систем дифференциальных уравнений с постоянными коэффициентами с помощью матриц (видоизмененный метод Эйлера) - student2.ru

Получаем фундаментальную систему решений: Решение линейных однородных систем дифференциальных уравнений с постоянными коэффициентами с помощью матриц (видоизмененный метод Эйлера) - student2.ru

Общее решение системы имеет вид Решение линейных однородных систем дифференциальных уравнений с постоянными коэффициентами с помощью матриц (видоизмененный метод Эйлера) - student2.ru или

Решение линейных однородных систем дифференциальных уравнений с постоянными коэффициентами с помощью матриц (видоизмененный метод Эйлера) - student2.ru

Пример 13.4. Найти общее решение системы уравнений

Решение линейных однородных систем дифференциальных уравнений с постоянными коэффициентами с помощью матриц (видоизмененный метод Эйлера) - student2.ru

Составляем характеристическое уравнение матрицы системы:

Решение линейных однородных систем дифференциальных уравнений с постоянными коэффициентами с помощью матриц (видоизмененный метод Эйлера) - student2.ru

Раскрывая определитель, находим Решение линейных однородных систем дифференциальных уравнений с постоянными коэффициентами с помощью матриц (видоизмененный метод Эйлера) - student2.ru

или окончательно Решение линейных однородных систем дифференциальных уравнений с постоянными коэффициентами с помощью матриц (видоизмененный метод Эйлера) - student2.ru .

Это уравнение имеет корни Решение линейных однородных систем дифференциальных уравнений с постоянными коэффициентами с помощью матриц (видоизмененный метод Эйлера) - student2.ru Решение линейных однородных систем дифференциальных уравнений с постоянными коэффициентами с помощью матриц (видоизмененный метод Эйлера) - student2.ru Решение линейных однородных систем дифференциальных уравнений с постоянными коэффициентами с помощью матриц (видоизмененный метод Эйлера) - student2.ru Определяем собственные векторы матрицы А.

При Решение линейных однородных систем дифференциальных уравнений с постоянными коэффициентами с помощью матриц (видоизмененный метод Эйлера) - student2.ru получаем систему уравнений

Решение линейных однородных систем дифференциальных уравнений с постоянными коэффициентами с помощью матриц (видоизмененный метод Эйлера) - student2.ru ,

одно из которых — следствие двух других. Решение линейных однородных систем дифференциальных уравнений с постоянными коэффициентами с помощью матриц (видоизмененный метод Эйлера) - student2.ru

Решение линейных однородных систем дифференциальных уравнений с постоянными коэффициентами с помощью матриц (видоизмененный метод Эйлера) - student2.ru данная система имеет множество решений . Отсюда , приняв Решение линейных однородных систем дифференциальных уравнений с постоянными коэффициентами с помощью матриц (видоизмененный метод Эйлера) - student2.ru , например, получим Решение линейных однородных систем дифференциальных уравнений с постоянными коэффициентами с помощью матриц (видоизмененный метод Эйлера) - student2.ru .Тогда вектор Решение линейных однородных систем дифференциальных уравнений с постоянными коэффициентами с помощью матриц (видоизмененный метод Эйлера) - student2.ru .

При Решение линейных однородных систем дифференциальных уравнений с постоянными коэффициентами с помощью матриц (видоизмененный метод Эйлера) - student2.ru имеем систему Решение линейных однородных систем дифференциальных уравнений с постоянными коэффициентами с помощью матриц (видоизмененный метод Эйлера) - student2.ru

Снова используя первые два уравнения (третье— их следствие), находим

собственный вектор Решение линейных однородных систем дифференциальных уравнений с постоянными коэффициентами с помощью матриц (видоизмененный метод Эйлера) - student2.ru .

При Решение линейных однородных систем дифференциальных уравнений с постоянными коэффициентами с помощью матриц (видоизмененный метод Эйлера) - student2.ru имеем систему Решение линейных однородных систем дифференциальных уравнений с постоянными коэффициентами с помощью матриц (видоизмененный метод Эйлера) - student2.ru

Из последнего уравнения находим Решение линейных однородных систем дифференциальных уравнений с постоянными коэффициентами с помощью матриц (видоизмененный метод Эйлера) - student2.ru . Подставляем это значение Решение линейных однородных систем дифференциальных уравнений с постоянными коэффициентами с помощью матриц (видоизмененный метод Эйлера) - student2.ru в первое уравнение и находим Решение линейных однородных систем дифференциальных уравнений с постоянными коэффициентами с помощью матриц (видоизмененный метод Эйлера) - student2.ru . Приняв Решение линейных однородных систем дифференциальных уравнений с постоянными коэффициентами с помощью матриц (видоизмененный метод Эйлера) - student2.ru , получаем Решение линейных однородных систем дифференциальных уравнений с постоянными коэффициентами с помощью матриц (видоизмененный метод Эйлера) - student2.ru , т.е. собственный вектор Решение линейных однородных систем дифференциальных уравнений с постоянными коэффициентами с помощью матриц (видоизмененный метод Эйлера) - student2.ru

Общее решение системы имеет вид Решение линейных однородных систем дифференциальных уравнений с постоянными коэффициентами с помощью матриц (видоизмененный метод Эйлера) - student2.ru ; Решение линейных однородных систем дифференциальных уравнений с постоянными коэффициентами с помощью матриц (видоизмененный метод Эйлера) - student2.ru

Или Решение линейных однородных систем дифференциальных уравнений с постоянными коэффициентами с помощью матриц (видоизмененный метод Эйлера) - student2.ru ,

Задачи для самостоятельного решения.

Найти общее (частное) решение системы уравнений

13.1. Решение линейных однородных систем дифференциальных уравнений с постоянными коэффициентами с помощью матриц (видоизмененный метод Эйлера) - student2.ru

13.2. Решение линейных однородных систем дифференциальных уравнений с постоянными коэффициентами с помощью матриц (видоизмененный метод Эйлера) - student2.ru

Ответы:

13.1. Решение линейных однородных систем дифференциальных уравнений с постоянными коэффициентами с помощью матриц (видоизмененный метод Эйлера) - student2.ru

13.2. Решение линейных однородных систем дифференциальных уравнений с постоянными коэффициентами с помощью матриц (видоизмененный метод Эйлера) - student2.ru

Библиографический список

1.Кузнецов М.Л., Киселев А.и,, Макаренко Г.И. и др. Вся высшая математика. т.3.М. Эдиториал УРСС. М. 2001.

2.Данко П.Е., Попов А.Г. Высшая математика в упражнениях и задачах. М. Высш.шк. 1998.

3.Зарецкая М.А. Трофимова В.Ш. Шарабуряк Ю.А. Обыкновенные дифференциальные уравнения, системы уравнений. Магнитогорск. ГОУВПО МГТУ. 2006.

4.Филиппов А.Ф. Сборник задач по дифференциальным уравнениям: М.Наука 1987.

Наши рекомендации