Усовершенствованный метод Эйлера
Точность метода Эйлера можно повысить, если воспользоваться для аппроксимации интеграла более точной формулой интегрирования –формулой трапеций.
Основная идея этого метода: вычисляемое по формуле (5) очередное значение будет точнее, если значение производной, то есть угловой коэффициент прямой замещающей интегральную кривую на отрезке будет вычисляться не по левому краю (то есть в точке ), а по центру отрезка . Но так как значение производной между точками не вычисляется, то перейдем к сдвоенным участкам центром, в которых является точка , при этом уравнение прямой получает вид:
(6)
А формула (5) получает вид
(7)
Формула (7) применена только для , следовательно, значения по ней получить нельзя, поэтому находят по методу Эйлера, при этом для получения более точного результата поступают так: с начала по формуле (5) находят значение
(8)
В точке а затем находится по формуле (7) с шагом
(9)
После того как найдено дальнейшие вычисления при производится по формуле (7)
….
Пример
В качестве примера проведем расчеты по формулам усовершенствованного методаЭйлера с шагом h=0,1 для задачи Коши .
;
***
Модифицированный метод Эйлера
Повысить точность и устойчивость вычисления решения можно с помощью неявного метода Эйлера следующего вида.
Прогноз:
(10)
Коррекция:
(11)
Геометрически это означает, что с начало определяется направление интегральной кривой в исходной точке и во вспомогательной точке , а в качестве окончательного направления берется среднее значение этих направлений.
Благодаря более точной формуле интегрирования, погрешность метода пропорциональна уже квадрату шага интегрирования.
Пример
В качестве примера проведем расчеты по формулам модифицированным методомЭйлера с шагом h=0,1 для задачи Коши .
Таблица Решение уравнения модифицированным методами Эйлера
xi | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1.0 | |
yi | 0.99 | 0.961 | 0.914 | 0.852 | 0.779 | 0.698 | 0.613 | 0.528 | 0.446 | 0.369 |
Точное решение имеет вид
Метод Рунге-Кутты
Воспользовавшись хорошо зарекомендовавшей себя формулой Симпсона, можно получить еще более точную формулу для решения задачи Коши для ОДУ первого порядка - широко используемого в вычислительной практике метода Рунге-Кутты.
В формуле Симпсона для приближенного вычисления определенного интеграла используются значения подинтегрального выражения в трех точках. В интеграле их всего две, поэтому введем дополнительную точку в середине отрезка [xi+1 , xi].
тогда можно определить так
Полученное выражение является неявным, так как в правой части содержатся еще не определенные значения функции yi+h/2 и yi+1. Чтобы воспользоваться этой формулой, надо использовать некоторое приближение для вычисления этих значений .
При использовании различных методов приближенного вычисления этих величин, получаются выражения для методов Рунге-Кутты различного порядка точности.
Алгоритм Рунге-Кутты четвертого порядка - (погрешность порядка h4):
где
Алгоритм четвертого порядка требует на каждом шаге четырех вычислений функции соответственно, но является весьма точным.