Алгебраический критерий устойчивости
Исследуем исходную СУ на устойчивость по алгебраическому критерию Гурвица. Определим передаточную функцию замкнутой системы. Обозначим вход и выход анализируемой фрагмента схемы через Y1 и Y2 соответственно, используя для этого блок В память, расположенном на вкладке Субструктуры. Два таких блока следует вынести на окно модели и присоединить к входу и к выходу СУ (рисунок 4.5).
Рисунок 4.5 - Структурная схема СУ для проведения анализа в частотной области
Выполним щелчок «мышью» по кнопке Старт (структурная схема разомкнутой СУ инициализировалась) и затем по кнопке Стоп (моделирование прервано, так и не начавшись).
В главном меню МВТУ Анализ выбрать Передаточные функции. Появляется окно Расчет передаточных функций, в котором следует записать соответствующие входы и выходы СУ. Щелкнуть по кнопке Расчет в окне Расчет передаточных функцийи через короткое время появится окно Результаты расчета передаточной функции(рисунок 4.6).
Рисунок 4.6 – Передаточная функция замкнутой СУ
Соответственно ПФ замкнутой СУ имеет вид:
,
а характеристическое уравнение СУ:
.
Составим и рассчитаем главный определитель Гурвица и его диагональные миноры для характеристического уравнения второго порядка:
,
.
Δ2 = 0.02282, Δ1 = 0.02282.
Поскольку коэффициент а0 > 0, то для устойчивости СУ главный определитель Гурвица и его диагональные миноры должны быть положительны. Очевидно, это условие выполняется, следовательно, исследуемая СУ устойчива.
Частотные критерии
Критерий Михайлова
Примечание.Методика исследования СУ в частотной области в данном примере выполняется в соответствии с методическими рекомендациями к лабораторной работе №3.
Исследуем исходную СУ на устойчивость по частотному критерию Михайлова. Для этого построим годограф Михайлова для замкнутой СУ (рисунок 4.7).
Рисунок 4.7 – Годограф Михайлова замкнутой СУ
Очевидно, что характеристический вектор системы начинает движение на положительной части действительной оси и поворачивается на 2 квадранта, что соответствует порядку характеристического уравнения системы. В соответствии с критерием СУ - устойчива.
Критерий Найквиста
Исследуем СУ на устойчивость по частотному критерию Найквиста. Для этого построим годограф Найквиста (рисунок 4.8) для разомкнутой СУ (2-ой весовой коэффициент в Главном сравнивающем устройстве должен быть равен нулю).
Рисунок 4.8 – Годограф Найквиста разомкнутой СУ
Рассмотрим более внимательно поведение линии годографа в окрестности точки (–1; 0j) (рисунок 4.9).
Рисунок 4.9 – Годограф в окрестности точки (–1; 0j)
Очевидно, годограф не охватывает точку (–1; 0j), поэтому СУ в замкнутом состоянии будет устойчивой.