Лекция 12.КРИВОЛИНЕЙНАЯ ТРАПЕЦИЯ. ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ, КАК ПРЕДЕЛ ИНТЕГРАЛЬНОЙ СУММЫ. ГЕОМЕТРИЧЕСКИЙ СМЫСЛ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА

Криволинейной трапецией называется геометрическая фигура, ограниченная графиком непрерывной неотрицательной функции y = f (x), отрезками прямых x = a и x = b и отрезком [a; b] оси OX.

Разобьем отрезок [a; b] на n‒ отрезков точками Лекция 12.КРИВОЛИНЕЙНАЯ ТРАПЕЦИЯ. ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ, КАК ПРЕДЕЛ ИНТЕГРАЛЬНОЙ СУММЫ. ГЕОМЕТРИЧЕСКИЙ СМЫСЛ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА - student2.ru . На каждом отрезке Лекция 12.КРИВОЛИНЕЙНАЯ ТРАПЕЦИЯ. ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ, КАК ПРЕДЕЛ ИНТЕГРАЛЬНОЙ СУММЫ. ГЕОМЕТРИЧЕСКИЙ СМЫСЛ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА - student2.ru выбираем точку Лекция 12.КРИВОЛИНЕЙНАЯ ТРАПЕЦИЯ. ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ, КАК ПРЕДЕЛ ИНТЕГРАЛЬНОЙ СУММЫ. ГЕОМЕТРИЧЕСКИЙ СМЫСЛ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА - student2.ru (кси), Лекция 12.КРИВОЛИНЕЙНАЯ ТРАПЕЦИЯ. ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ, КАК ПРЕДЕЛ ИНТЕГРАЛЬНОЙ СУММЫ. ГЕОМЕТРИЧЕСКИЙ СМЫСЛ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА - student2.ru

Построим прямоугольники с основанием: Лекция 12.КРИВОЛИНЕЙНАЯ ТРАПЕЦИЯ. ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ, КАК ПРЕДЕЛ ИНТЕГРАЛЬНОЙ СУММЫ. ГЕОМЕТРИЧЕСКИЙ СМЫСЛ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА - student2.ru и высотой

f( Лекция 12.КРИВОЛИНЕЙНАЯ ТРАПЕЦИЯ. ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ, КАК ПРЕДЕЛ ИНТЕГРАЛЬНОЙ СУММЫ. ГЕОМЕТРИЧЕСКИЙ СМЫСЛ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА - student2.ru ), тогда Лекция 12.КРИВОЛИНЕЙНАЯ ТРАПЕЦИЯ. ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ, КАК ПРЕДЕЛ ИНТЕГРАЛЬНОЙ СУММЫ. ГЕОМЕТРИЧЕСКИЙ СМЫСЛ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА - student2.ru Сумма Лекция 12.КРИВОЛИНЕЙНАЯ ТРАПЕЦИЯ. ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ, КАК ПРЕДЕЛ ИНТЕГРАЛЬНОЙ СУММЫ. ГЕОМЕТРИЧЕСКИЙ СМЫСЛ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА - student2.ru называется интегральной суммой.

Лекция 12.КРИВОЛИНЕЙНАЯ ТРАПЕЦИЯ. ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ, КАК ПРЕДЕЛ ИНТЕГРАЛЬНОЙ СУММЫ. ГЕОМЕТРИЧЕСКИЙ СМЫСЛ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА - student2.ru

При Лекция 12.КРИВОЛИНЕЙНАЯ ТРАПЕЦИЯ. ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ, КАК ПРЕДЕЛ ИНТЕГРАЛЬНОЙ СУММЫ. ГЕОМЕТРИЧЕСКИЙ СМЫСЛ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА - student2.ru Получим:

Лекция 12.КРИВОЛИНЕЙНАЯ ТРАПЕЦИЯ. ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ, КАК ПРЕДЕЛ ИНТЕГРАЛЬНОЙ СУММЫ. ГЕОМЕТРИЧЕСКИЙ СМЫСЛ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА - student2.ru

Лекция 12.КРИВОЛИНЕЙНАЯ ТРАПЕЦИЯ. ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ, КАК ПРЕДЕЛ ИНТЕГРАЛЬНОЙ СУММЫ. ГЕОМЕТРИЧЕСКИЙ СМЫСЛ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА - student2.ru

Рис. 1

Определенный интеграл, как предел интегральной суммы.

Геометрический смысл определенного интеграла.

Определенным интегралом от функции f (x) на промежутке [a; b] называется предел интегральной суммы(1).

Геометрический смысл.

Определенный интеграл от непрерывной неотрицательной функции

f (x) на промежутке [a; b] численно равен площади соответствующей криволинейной трапеции:

Лекция 12.КРИВОЛИНЕЙНАЯ ТРАПЕЦИЯ. ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ, КАК ПРЕДЕЛ ИНТЕГРАЛЬНОЙ СУММЫ. ГЕОМЕТРИЧЕСКИЙ СМЫСЛ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА - student2.ru

Геометрические приложения определенного интеграла.

1. Вычисление S фигуры.

1) Если геометрическая фигура ограничена графиками двух непрерывных неотрицательных функций Лекция 12.КРИВОЛИНЕЙНАЯ ТРАПЕЦИЯ. ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ, КАК ПРЕДЕЛ ИНТЕГРАЛЬНОЙ СУММЫ. ГЕОМЕТРИЧЕСКИЙ СМЫСЛ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА - student2.ru и Лекция 12.КРИВОЛИНЕЙНАЯ ТРАПЕЦИЯ. ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ, КАК ПРЕДЕЛ ИНТЕГРАЛЬНОЙ СУММЫ. ГЕОМЕТРИЧЕСКИЙ СМЫСЛ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА - student2.ru .

Лекция 12.КРИВОЛИНЕЙНАЯ ТРАПЕЦИЯ. ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ, КАК ПРЕДЕЛ ИНТЕГРАЛЬНОЙ СУММЫ. ГЕОМЕТРИЧЕСКИЙ СМЫСЛ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА - student2.ru

Лекция 12.КРИВОЛИНЕЙНАЯ ТРАПЕЦИЯ. ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ, КАК ПРЕДЕЛ ИНТЕГРАЛЬНОЙ СУММЫ. ГЕОМЕТРИЧЕСКИЙ СМЫСЛ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА - student2.ru

Лекция 12.КРИВОЛИНЕЙНАЯ ТРАПЕЦИЯ. ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ, КАК ПРЕДЕЛ ИНТЕГРАЛЬНОЙ СУММЫ. ГЕОМЕТРИЧЕСКИЙ СМЫСЛ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА - student2.ru

2) Если геометрическая фигура ограничена графиком Лекция 12.КРИВОЛИНЕЙНАЯ ТРАПЕЦИЯ. ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ, КАК ПРЕДЕЛ ИНТЕГРАЛЬНОЙ СУММЫ. ГЕОМЕТРИЧЕСКИЙ СМЫСЛ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА - student2.ru

Лекция 12.КРИВОЛИНЕЙНАЯ ТРАПЕЦИЯ. ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ, КАК ПРЕДЕЛ ИНТЕГРАЛЬНОЙ СУММЫ. ГЕОМЕТРИЧЕСКИЙ СМЫСЛ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА - student2.ru

Лекция 12.КРИВОЛИНЕЙНАЯ ТРАПЕЦИЯ. ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ, КАК ПРЕДЕЛ ИНТЕГРАЛЬНОЙ СУММЫ. ГЕОМЕТРИЧЕСКИЙ СМЫСЛ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА - student2.ru

3) Если Лекция 12.КРИВОЛИНЕЙНАЯ ТРАПЕЦИЯ. ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ, КАК ПРЕДЕЛ ИНТЕГРАЛЬНОЙ СУММЫ. ГЕОМЕТРИЧЕСКИЙ СМЫСЛ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА - student2.ru

Лекция 12.КРИВОЛИНЕЙНАЯ ТРАПЕЦИЯ. ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ, КАК ПРЕДЕЛ ИНТЕГРАЛЬНОЙ СУММЫ. ГЕОМЕТРИЧЕСКИЙ СМЫСЛ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА - student2.ru

Лекция 12.КРИВОЛИНЕЙНАЯ ТРАПЕЦИЯ. ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ, КАК ПРЕДЕЛ ИНТЕГРАЛЬНОЙ СУММЫ. ГЕОМЕТРИЧЕСКИЙ СМЫСЛ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА - student2.ru

Лекция 12.КРИВОЛИНЕЙНАЯ ТРАПЕЦИЯ. ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ, КАК ПРЕДЕЛ ИНТЕГРАЛЬНОЙ СУММЫ. ГЕОМЕТРИЧЕСКИЙ СМЫСЛ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА - student2.ru

Пример.

Лекция 12.КРИВОЛИНЕЙНАЯ ТРАПЕЦИЯ. ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ, КАК ПРЕДЕЛ ИНТЕГРАЛЬНОЙ СУММЫ. ГЕОМЕТРИЧЕСКИЙ СМЫСЛ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА - student2.ru

Решение:

Лекция 12.КРИВОЛИНЕЙНАЯ ТРАПЕЦИЯ. ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ, КАК ПРЕДЕЛ ИНТЕГРАЛЬНОЙ СУММЫ. ГЕОМЕТРИЧЕСКИЙ СМЫСЛ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА - student2.ru

Лекция 12.КРИВОЛИНЕЙНАЯ ТРАПЕЦИЯ. ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ, КАК ПРЕДЕЛ ИНТЕГРАЛЬНОЙ СУММЫ. ГЕОМЕТРИЧЕСКИЙ СМЫСЛ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА - student2.ru

Лекция 12.КРИВОЛИНЕЙНАЯ ТРАПЕЦИЯ. ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ, КАК ПРЕДЕЛ ИНТЕГРАЛЬНОЙ СУММЫ. ГЕОМЕТРИЧЕСКИЙ СМЫСЛ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА - student2.ru

Лекция 12.КРИВОЛИНЕЙНАЯ ТРАПЕЦИЯ. ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ, КАК ПРЕДЕЛ ИНТЕГРАЛЬНОЙ СУММЫ. ГЕОМЕТРИЧЕСКИЙ СМЫСЛ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА - student2.ru

(3; 5), (6; 8) ‒ точки пересечения линии.

Лекция 12.КРИВОЛИНЕЙНАЯ ТРАПЕЦИЯ. ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ, КАК ПРЕДЕЛ ИНТЕГРАЛЬНОЙ СУММЫ. ГЕОМЕТРИЧЕСКИЙ СМЫСЛ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА - student2.ru

Лекция 12.КРИВОЛИНЕЙНАЯ ТРАПЕЦИЯ. ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ, КАК ПРЕДЕЛ ИНТЕГРАЛЬНОЙ СУММЫ. ГЕОМЕТРИЧЕСКИЙ СМЫСЛ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА - student2.ru

Второй способ:

Лекция 12.КРИВОЛИНЕЙНАЯ ТРАПЕЦИЯ. ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ, КАК ПРЕДЕЛ ИНТЕГРАЛЬНОЙ СУММЫ. ГЕОМЕТРИЧЕСКИЙ СМЫСЛ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА - student2.ru

Лекция 12.КРИВОЛИНЕЙНАЯ ТРАПЕЦИЯ. ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ, КАК ПРЕДЕЛ ИНТЕГРАЛЬНОЙ СУММЫ. ГЕОМЕТРИЧЕСКИЙ СМЫСЛ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА - student2.ru

Лекция 12.КРИВОЛИНЕЙНАЯ ТРАПЕЦИЯ. ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ, КАК ПРЕДЕЛ ИНТЕГРАЛЬНОЙ СУММЫ. ГЕОМЕТРИЧЕСКИЙ СМЫСЛ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА - student2.ru

Лекция 12.КРИВОЛИНЕЙНАЯ ТРАПЕЦИЯ. ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ, КАК ПРЕДЕЛ ИНТЕГРАЛЬНОЙ СУММЫ. ГЕОМЕТРИЧЕСКИЙ СМЫСЛ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА - student2.ru

(5; 9) ‒ вершина параболы.

Лекция 12.КРИВОЛИНЕЙНАЯ ТРАПЕЦИЯ. ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ, КАК ПРЕДЕЛ ИНТЕГРАЛЬНОЙ СУММЫ. ГЕОМЕТРИЧЕСКИЙ СМЫСЛ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА - student2.ru

Лекция 12.КРИВОЛИНЕЙНАЯ ТРАПЕЦИЯ. ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ, КАК ПРЕДЕЛ ИНТЕГРАЛЬНОЙ СУММЫ. ГЕОМЕТРИЧЕСКИЙ СМЫСЛ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА - student2.ru

Лекция 12.КРИВОЛИНЕЙНАЯ ТРАПЕЦИЯ. ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ, КАК ПРЕДЕЛ ИНТЕГРАЛЬНОЙ СУММЫ. ГЕОМЕТРИЧЕСКИЙ СМЫСЛ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА - student2.ru

Лекция 12.КРИВОЛИНЕЙНАЯ ТРАПЕЦИЯ. ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ, КАК ПРЕДЕЛ ИНТЕГРАЛЬНОЙ СУММЫ. ГЕОМЕТРИЧЕСКИЙ СМЫСЛ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА - student2.ru

Лекция 12.КРИВОЛИНЕЙНАЯ ТРАПЕЦИЯ. ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ, КАК ПРЕДЕЛ ИНТЕГРАЛЬНОЙ СУММЫ. ГЕОМЕТРИЧЕСКИЙ СМЫСЛ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА - student2.ru

Лекция 13. ОСНОВНЫЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ ТЕОРИИ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ И ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ.

.

Задачи, приводящие к дифференциальным уравнениям.

1. Задача о нахождении закона движения материальной точки.

Обозначив Лекция 12.КРИВОЛИНЕЙНАЯ ТРАПЕЦИЯ. ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ, КАК ПРЕДЕЛ ИНТЕГРАЛЬНОЙ СУММЫ. ГЕОМЕТРИЧЕСКИЙ СМЫСЛ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА - student2.ru ‒ путь в момент времени Лекция 12.КРИВОЛИНЕЙНАЯ ТРАПЕЦИЯ. ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ, КАК ПРЕДЕЛ ИНТЕГРАЛЬНОЙ СУММЫ. ГЕОМЕТРИЧЕСКИЙ СМЫСЛ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА - student2.ru , Лекция 12.КРИВОЛИНЕЙНАЯ ТРАПЕЦИЯ. ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ, КАК ПРЕДЕЛ ИНТЕГРАЛЬНОЙ СУММЫ. ГЕОМЕТРИЧЕСКИЙ СМЫСЛ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА - student2.ru ‒скорость, тогда из физического смысла производной следует, что

Лекция 12.КРИВОЛИНЕЙНАЯ ТРАПЕЦИЯ. ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ, КАК ПРЕДЕЛ ИНТЕГРАЛЬНОЙ СУММЫ. ГЕОМЕТРИЧЕСКИЙ СМЫСЛ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА - student2.ru

или

Лекция 12.КРИВОЛИНЕЙНАЯ ТРАПЕЦИЯ. ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ, КАК ПРЕДЕЛ ИНТЕГРАЛЬНОЙ СУММЫ. ГЕОМЕТРИЧЕСКИЙ СМЫСЛ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА - student2.ru

Если Лекция 12.КРИВОЛИНЕЙНАЯ ТРАПЕЦИЯ. ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ, КАК ПРЕДЕЛ ИНТЕГРАЛЬНОЙ СУММЫ. ГЕОМЕТРИЧЕСКИЙ СМЫСЛ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА - student2.ru , то получим Лекция 12.КРИВОЛИНЕЙНАЯ ТРАПЕЦИЯ. ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ, КАК ПРЕДЕЛ ИНТЕГРАЛЬНОЙ СУММЫ. ГЕОМЕТРИЧЕСКИЙ СМЫСЛ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА - student2.ru , проинтегрировав это равенство, получим закон движения:

Лекция 12.КРИВОЛИНЕЙНАЯ ТРАПЕЦИЯ. ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ, КАК ПРЕДЕЛ ИНТЕГРАЛЬНОЙ СУММЫ. ГЕОМЕТРИЧЕСКИЙ СМЫСЛ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА - student2.ru

2. Задача о размножении бактерий.

Пусть Лекция 12.КРИВОЛИНЕЙНАЯ ТРАПЕЦИЯ. ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ, КАК ПРЕДЕЛ ИНТЕГРАЛЬНОЙ СУММЫ. ГЕОМЕТРИЧЕСКИЙ СМЫСЛ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА - student2.ru ‒ число бактерий в момент времени Лекция 12.КРИВОЛИНЕЙНАЯ ТРАПЕЦИЯ. ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ, КАК ПРЕДЕЛ ИНТЕГРАЛЬНОЙ СУММЫ. ГЕОМЕТРИЧЕСКИЙ СМЫСЛ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА - student2.ru .Так как скорость размножения бактерий пропорциональна их количеству, то по аналогии с предыдущим.

Лекция 12.КРИВОЛИНЕЙНАЯ ТРАПЕЦИЯ. ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ, КАК ПРЕДЕЛ ИНТЕГРАЛЬНОЙ СУММЫ. ГЕОМЕТРИЧЕСКИЙ СМЫСЛ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА - student2.ru

где Лекция 12.КРИВОЛИНЕЙНАЯ ТРАПЕЦИЯ. ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ, КАК ПРЕДЕЛ ИНТЕГРАЛЬНОЙ СУММЫ. ГЕОМЕТРИЧЕСКИЙ СМЫСЛ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА - student2.ru ‒ коэффициент пропорциональности.

Лекция 12.КРИВОЛИНЕЙНАЯ ТРАПЕЦИЯ. ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ, КАК ПРЕДЕЛ ИНТЕГРАЛЬНОЙ СУММЫ. ГЕОМЕТРИЧЕСКИЙ СМЫСЛ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА - student2.ru

Лекция 12.КРИВОЛИНЕЙНАЯ ТРАПЕЦИЯ. ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ, КАК ПРЕДЕЛ ИНТЕГРАЛЬНОЙ СУММЫ. ГЕОМЕТРИЧЕСКИЙ СМЫСЛ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА - student2.ru

Лекция 12.КРИВОЛИНЕЙНАЯ ТРАПЕЦИЯ. ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ, КАК ПРЕДЕЛ ИНТЕГРАЛЬНОЙ СУММЫ. ГЕОМЕТРИЧЕСКИЙ СМЫСЛ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА - student2.ru

Основные понятия и определения теории дифференциальных уравнений.

1. Дифференциальным уравнением называется уравнение, связывающее между собой независимую переменную x, искомую функцию yи ее производные или дифференциалы.

Лекция 12.КРИВОЛИНЕЙНАЯ ТРАПЕЦИЯ. ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ, КАК ПРЕДЕЛ ИНТЕГРАЛЬНОЙ СУММЫ. ГЕОМЕТРИЧЕСКИЙ СМЫСЛ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА - student2.ru

Порядком дифференциального уравнения называется порядок старшей производной, входящей в него.

Пример.

Лекция 12.КРИВОЛИНЕЙНАЯ ТРАПЕЦИЯ. ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ, КАК ПРЕДЕЛ ИНТЕГРАЛЬНОЙ СУММЫ. ГЕОМЕТРИЧЕСКИЙ СМЫСЛ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА - student2.ru

Лекция 12.КРИВОЛИНЕЙНАЯ ТРАПЕЦИЯ. ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ, КАК ПРЕДЕЛ ИНТЕГРАЛЬНОЙ СУММЫ. ГЕОМЕТРИЧЕСКИЙ СМЫСЛ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА - student2.ru

Решением дифференциального уравнения называется функция, обращающая его в тождество.

Общим решением дифференциального уравнения называется решение, содержащее столько произвольных постоянных C, каков порядок дифференциального уравнения.

Лекция 12.КРИВОЛИНЕЙНАЯ ТРАПЕЦИЯ. ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ, КАК ПРЕДЕЛ ИНТЕГРАЛЬНОЙ СУММЫ. ГЕОМЕТРИЧЕСКИЙ СМЫСЛ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА - student2.ru

так как

Лекция 12.КРИВОЛИНЕЙНАЯ ТРАПЕЦИЯ. ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ, КАК ПРЕДЕЛ ИНТЕГРАЛЬНОЙ СУММЫ. ГЕОМЕТРИЧЕСКИЙ СМЫСЛ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА - student2.ru

то

Лекция 12.КРИВОЛИНЕЙНАЯ ТРАПЕЦИЯ. ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ, КАК ПРЕДЕЛ ИНТЕГРАЛЬНОЙ СУММЫ. ГЕОМЕТРИЧЕСКИЙ СМЫСЛ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА - student2.ru

Лекция 12.КРИВОЛИНЕЙНАЯ ТРАПЕЦИЯ. ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ, КАК ПРЕДЕЛ ИНТЕГРАЛЬНОЙ СУММЫ. ГЕОМЕТРИЧЕСКИЙ СМЫСЛ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА - student2.ru

Лекция 12.КРИВОЛИНЕЙНАЯ ТРАПЕЦИЯ. ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ, КАК ПРЕДЕЛ ИНТЕГРАЛЬНОЙ СУММЫ. ГЕОМЕТРИЧЕСКИЙ СМЫСЛ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА - student2.ru

Частное решение дифференциального уравнения получается из общего решения при определенных начальных значениях независимой переменной и искомой функции.

Задача нахождения частного решения дифференциального уравнения называется задачей Каши.

Геометрическиобщее решение дифференциального уравнения представляет собой семейство интегральных кривых; частное решение ‒ единственная кривая, проходящая через данную точку Лекция 12.КРИВОЛИНЕЙНАЯ ТРАПЕЦИЯ. ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ, КАК ПРЕДЕЛ ИНТЕГРАЛЬНОЙ СУММЫ. ГЕОМЕТРИЧЕСКИЙ СМЫСЛ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА - student2.ru .

Наши рекомендации