Биномиальное распределение
Предположим событие Е во всех случаях имеет одну и ту же вероятность , тогда вероятность противоположного события будет так же постоянна и может определяться по формуле .
Такой подход позволяет рассматривать практически любое пространство элементарных событий, как дихотомное (то есть состоит из противоположных событий).
Допустим, необходимо определить вероятность появления события Е ровно k раз в n независимых испытаниях. В этом случае событие противоположное Е произойдет n-k раз. Отобрать k-элементов из n можно различными способами, каждый из которых несовместное событие, появление которого это результат игры случая.
В математике доказано, что число различных комбинаций из n элементов по k определяется по формуле:
, ! это произведение натурального ряда чисел, каждое из которых больше предыдущего на 1 (начиная с 1).
В соответствии с теоремой умножения вероятностей вероятность появления одной из возможных комбинаций определяется по формуле:
Формула, которая определяет вероятность появления события Е k-раз в n-независимых испытаниях, называется формулой Бернулли. А схема отбора из дихотомной совокупности схемой Бернулли (или схемой возвращаемого шара или схемой повторного отбора).
Пример: Для обслуживания покупателей супермаркета в час пик без очередей должно работать не менее 6 контролеров-кассиров из 8. Вероятность отсутствия одного из работников составляет 0,1. Найти вероятность работы расчетно-кассового узла без очередей.
Поскольку нас устраивает работа 6, 7, 8 кассовых кабин, то вероятность появления одного из этих несовместных событий будет определяться по формуле сложения вероятностей. Каждая из этих вероятностей может определяться по формуле Бернулли.
Таким образом, в 96 случаях из 100 очередей не будет.
Если при фиксированной численности n-повторного отбора из дихотомной совокупности изменять величину k, то полученное распределение вероятности будет называться биномиальным. Поскольку его ординаты представляют собой элементы разложения бинома .
Число наступления событий в n-независимых испытаниях называется наивероятнейшим, если этому числу соответствует наибольшая вероятность.
При этом если k смешанное число, то в результате выбирается ближайшее к этому смешанному числу, но меньше его, целое число.
В примере с кассирами .
Математическое ожидание М(k) числа появления событий Е в n-независимых испытаниях равно произведению числа испытаний на вероятность появления события в каждом испытании.
Если перейти от абсолютного числа раз появления события к плотностям распределения вероятностей, то будет равно p.
Дисперсия биномиального распределения D(k)= , - по плотности.
График биномиального распределения зависит от соотношения p и q. Если p равно q и равно 0,5, то распределение симметрично, в противном случае (p≠q) наблюдается асимметрия или скошенность полигона.
Показатель асимметрии биномиального распределения определяется по формуле:
Если , то высота биномиального распределения соответствует высоте кривой нормального распределения. Доказано, что с увеличением числа испытаний значения , а биномиальное распределение стремится к нормальному распределению.