Функции двух переменных
Приращение функции
Функция, дифференцируемая в точке
при
В этом случае дифференциал функции в точке :
- частные производные, вычисленные в точке .
Дифференцирование композиции
1. Если то
2. Если то:
Однородная функция степени k
3. Пределы и непрерывность
Исследование пределов и непрерывности в многомерных пространствах приводит ко многим нелогичным и патологическим результатам, не свойственным функциям одной переменной. Например, существуют скалярные функции двух переменных, имеющих точки в области определения, которые при приближении вдоль произвольной прямой дают специфический предел, и дают другой предел при приближении вдоль параболы. Функция
стремится к нулю по любой прямой, проходящей через начало координат. Однако, когда к началу координат приближаются вдоль параболы , предел = 0.5. Так как пределы по разным траекториям не совпадают, предела не существует.
Функция имеет пределом число A при стремлении переменных , соответственно, к , если для каждого число найдется такое число , что , то есть .
Функция называется непрерывной в точке , если предельное значение этой функции в точке существует и равно частному значению .
Функция называется непрерывной на множестве , если она непрерывна в каждой точке этого множества.
4. Частное и полное приращение функции.
Полное приращение функции
|
Частное приращение функции
|
|
Вообще, полное приращение функции не равно сумме частных приращений.
Пример.z=xy.
|
|
|
5.
Частные производные первого порядка | |
|
Рассмотрим функцию z=f(х,у) двух независимых переменных и установим геометрический смысл частных переменных z'x=f'x(х,у) и z'y=f'y(х,у).
В этом случае уравнение z=f(х,у) есть уравнение некоторой поверхности (рис.1.3). Проведем плоскость y = const. В сечении этой плоскостью поверхности z=f(х,у) получится некоторая линия l1 пересечения, вдоль которой изменяются лишь величины х и z.
Частная производная z'x (её геометрический смысл непосредственно следует из известного нам геометрического смысла производной функции одной переменной) численно равна тангенсу угла α наклона, по отношению к оси Ох , касательной L1 к кривой l1, получающейся в сечении поверхности z=f(х,у) плоскостью y = const в точке М(х,у,f(xy)): z'x= tgα.
В сечении же поверхности z=f(х,у) плоскостью х = const получится линия пересечения l2, вдоль которой изменяются лишь величины у и z. Тогда частная производная z'y численно равна тангенсу угла β наклона по отношению к оси Оу, касательной L2 к указанной линии l2пересечения в точке М(х,у,f(xy)): z'x= tgβ.
6. Простейшие дифференциальные уравнения первого порядка — класс дифференциальных уравнений первого порядка, наиболее легко поддающихся решению и исследованию. К нему относятся уравнения в полных дифференциалах, уравнения с разделяющимися переменными, однородные уравнения первого порядка и линейные уравнения первого порядка. Все эти уравнения можно проинтегрировать в конечном виде.
Отправной точкой изложения будет служить дифференциальное уравнение первого порядка, записанное в т. н. симметричной форме:
где функции и определены и непрерывны в некоторой области .
Выясним каков геометрический смысл дифференциала. Возьмем на графике функции y = f(x) произвольную точку M(x,y) (рис21.). Проведем касательную к кривой y = f(x) в точке M, которая образует угол f с положительным направлением оси OX, то есть f'(x) = tg f. Из прямоугольного треугольника MKN
KN = MNtgf = D xtg f = f'(x)D x,
то есть dy = KN.
Таким образом, дифференциал функции есть приращение ординаты касательной, проведенной к графику функции y = f(x) в данной точке, когда x получает приращение D x.
7. Рассмотрим для примера функцию
от двух переменных, которую будем предполагать дифференцируемой.
Мы хотим вычислить эту функцию в точке , где
,
,
Приближенные значения этих чисел запишем в виде конечных десятичных дробей
,
.
Таким образом, имеют место приближенные равенства
с абсолютными погрешностями приближения, удовлетворяющими неравенствам
.
Подставив в функцию вместо соответственно , получим приближенное равенство
с абсолютной погрешностью
,
которую при достаточно малых можно приближенно заменить дифференциалом функции в точке :
.
Отсюда получаем неравенство
. (1)
На самом деле это неравенство приближенное, потому что мы получили его, пренебрегая некоторой величиной, правда, значительно меньшей, чем .
Обратим внимание на тот факт, что конечные десятичные дроби при уменьшении , становятся все более и более громоздкими. Поэтому при вычислении числа мы должны беспокоиться не только о том, чтобы оно приближало должным образом, но и чтобы производимые при этом вычисления совершались возможно, экономно. В силу этого замечания из неравенства (1) следует, что если нужно, чтобы абсолютная погрешность не превышала данную малую величину, которую мы обозначим через , то этого мы достигнем, взяв числа , такими, чтобы выполнялись неравенства
, (2)
т. е. чтобы погрешность распределялась между слагаемыми в правой части неравенства (1) поровну.
Из неравенств (2) видно, что вычисления будут наиболее экономными, если в качестве , (на самом деле , ) взять наибольшие возможные числа, удовлетворяющие этим неравенствам.