Функции. Определение способа задания. Классификация функций. Основные элементарные функции.

Функция - это зависимость одной величины от другой.

Если существует взаимооднозначное соответствие между переменной х одного множества и переменной у другого множества, то она называется функциональной зависимостью. y=f(x).

Определение способа задания:

-аналитически (y=kx+b)

-графический (график)

-таблично

x
y

-алгоритмически (с помощью ЭВМ)

Классификация функций:

Элементарные: - функции, которые получаются из основных элементарных ф-ций с помощью алгебраических действий (+,-,*,/,введение в степень). Основные элементарные ф-ции:

1. y=xn - степенная

2. y=ax - показательная

3. y=logax - логарифмическая

4. y=sinx, y=cosx - тригонометрические.

Сложные:

Y=f(U), где U=j(x), Y=f[j(x)]

Если ф-ция у зависит от промежуточного аргумента U, который зависит от независимой переменной х, то y=f[j(x)] называется сложным заданием х.

3, Предел последовательности:

y=f(Un), где U1,U2,...Un, а Un=n/(n2+1)

Предел: число а называется пределом переменной xn, если для каждого “+” как угодно малого числа e(эпсилон) существует такой номер N, что при n>N разность |xn-a|<e

limxn=a

n®¥

-e<Xn-a<e

a-e<Xn<a+e

1ый, 2ой замечательный предел

j

lim((Sina)/a)=1

x®0

SDOAC<SсектораOAC<SDOCB

SDOAC=1/2*OC*AD, OA=OC=1, то

SDOAC=1/2*OC*OA*Sina=1/2*Sina

SсектораOAC=1/2*OA*OC*a=1/2*a(т.к. OA=OC)

SDOCB=1/2*OC*BC=1/2*OC*OC*tga=1/2*tga

1/2*Sina<1/2*a<1/2tga //*2

sina<a<tga//:sin

1<a/sina<1/cosa, =>cosa<sina/a<1,

limCosa<lim((Sina)/a)<lim1, по признаку

a®0 a®0 существования

предела ф-ции

lim((Sina)/a)=1

a®0

2ой: lim(1+1/n)n=e»2.7183

n®¥

Зная, что 1/n=a - б.м.в., то n=1/a и

x®¥ a®0

lim(1+1/n)1/a=e

a®0

Свойства определителей.

1) Если к.-л. строка или столбец в матрице состоит из одних нолей, то Ñ этой матрицы равен 0. 2)При транспонировании матрицы её определитель не изменяется: çА ç=÷ А’÷ . 3) Если все элементы к.-л. строки или столбца матрицы умножить на одно и то же число, то и Ñ этой матрицы умножится на это же число. 4) При перестановке местами 2-х строк или столбцов матрицы её определитель меняет свой знак на противоположный. 5) Если квадратная матрица содержит 2 одинаковых строки или столбца, то её определитель равен 0. 6)Если 2 строки или 2 столбца матрицы пропорциональны, то её Ñ равен 0. 7) Сумма произведений элементов к.-л. строки или столбца матрицы и другой строки или столбца равна 0. 8) Определитель матрицы не изменяется если к элементам одной строки или столбца прибавить элементы другой строки или столбца, умноженный на одно и то же число. 9)Если к.-л. столбец или строка матрицы представляет собой сумму 2-х элементов, то Ñ этой матрицы может быть представлен в виде суммы 2-х определителей..

Наши рекомендации