Теорема Гаусса –Маркова
Определение коэффициентов модели регрессии осуществляется на третьем этапе схемы построения эконометрической модели. В результате этой процедуры рассчитываются оценки (приближенные значения) неизвестных коэффициентов спецификации модели.
Спецификация линейной эконометрической модели из изолированного уравнения с гомоскедастичными возмущениями имеет вид:
Рассмотрим метод наименьших квадратов на примере оценивания эконометрических моделей в виде моделей парной регрессии (изолированных уравнений с двумя переменными).
Если уравнение модели содержит две экономические переменные – эндогенную yiи предопределенную xi, то модель имеет вид:
Данная модель называется моделью линейной парной регрессии и содержит три неизвестных параметра:
?0 , ?1 , ?. (3)
Предположим, что имеется выборка: (х1, y1), (х2, y2),… (хn , yn) (4)
Тогда в рамках исследуемой модели данные величины связаны следующим образом:
y1 = a0 + a1 * x1 + u1,
y2 = a0 + a1 * x2 + u2, (5)
…
yn= a0 + a1 * x n + u n.
Данная система называется системой уравнений наблюдения объекта в рамках исследуемой линейной модели или схемой Гаусса-Маркова.
Компактная запись схемы Гаусса-Маркова:
где
– вектор-столбец известных значений эндогенной переменной yiмодели регрессии;
– вектор-столбец неизвестных значений случайных возмущений ?i;
– матрица известных значений предопределенной переменной xi модели;
? = (?0 ?1 )Т (10) – вектор неизвестных коэффициентов модели регрессии.
Обозначим оценку вектора неизвестных коэффициентов модели регрессии как
Данная оценка вычисляется на основании выборочных данных (7) и (9) с помощью некоторой процедуры:
где P (X, ?) – символ процедуры.
Процедура (12) называется линейной относительно вектора (7) значений эндогенной переменной yi, если выполняется условие:
где
(14) – матрица коэффициентов, зависящих только от выборочных значений (9) предопределенной переменной хi.
Теорема Гаусса-Маркова. Пусть матрица Х коэффициентов уравнений наблюдений (6) имеет полный ранг, а случайные возмущения (8) удовлетворяют четырем условиям:
E(?1) = E(?2) = … = E(?n) = 0, (15)
Var(?1) = Var(?2) = … = Var(?n) = ?2(16)
Cov(?i, ?j) = 0 при i?j(17)
Cov(xi,?j) = 0 при всех значениях i и j (18)
В этом случае справедливы следующие утверждения:
а) наилучшая линейная процедура (13), приводящая к несмещенной и эффективной оценке (11), имеет вид:
б) линейная несмещенная эффективная оценка (19) обладает свойством наименьших квадратов:
в) ковариационная матрица оценки (19) вычисляется по правилу:
г) несмещенная оценка параметра ?2 модели (2) находится по формуле:
Следствие теоремы Гаусса-Маркова. Оценка
доставляемая процедурой (19) метода наименьших квадратов, может быть вычислена в процессе решения системы двух линейных алгебраических уравнений:
Данная система называется системой нормальных уравнений. Ее коэффициенты и свободные члены определяются по правилам:
[x] = x1 + x2 +…+ xn,
[y] = y1 + y2 +…+ yn, (24)
x2] = x12 + x22 +…+ xn2,
[xy] = x1*y1 + x2*y2 + … + xn*yn.
Явный вид решения системы (23):