Красивые» задачи по чертежу

Задачи на построение чертежей, вызывают интерес именно условием (красивый чертеж). Поэтому учащиеся начинают фантазировать на данную тему, и у них получаются оригинальные чертежи.

Задача

Зигзаг разделил правильный девятиугольник на треугольники, как показано на рисунке. Какая часть площади больше: закрашенная или незакрашенная?

Красивые» задачи по чертежу - student2.ru

Решение. Проведем в девятиугольнике еще несколько диагоналей.

Красивые» задачи по чертежу - student2.ru

Девятиугольник разбился на 13 треугольников. На рисунке образовалось много параллелограммов и трапеций с диагоналями. Расставим номера треугольников, причем одинаковым номером отметим равные треугольники разных цветов. 12 из них разбились на пары, а тринадцатому, который оказался закрашенным, пары не хватило. Значит, закрашенная часть площади девятиугольника больше его незакрашенной части.

Ответ: закрашенная.

Красивые» задачи по решению

Нестандартность решения может проявляться и в методах решения. Особый интерес в этом смысле представляют задачи, имеющие несколько различных методов решения, и многовариантные задачи, имеющие несколько ответов (причем желательно, чтобы факт наличия нескольких ответов не был явно указан в формулировки условия).

Задача

Дан острый угол А, вершина которого недоступна (находится за пределами чертежа). Постройте биссектрису данного угла.

Эту задачу можно решить, как минимум, тремя способами, каждый из которых по-своему красив.

Способ 1 опирается на тот факт, что три биссектрисы треугольника пересекаются в одной точке. Взяв две произвольные точки В и С на сторонах данного угла, получим треугольник АВС (с одной недоступной вершиной), две биссектрисы которого можно построить. Точка пересечения этих биссектрис лежит на искомой биссектрисе. Аналогично можно найти и вторую точку.

Красивые» задачи по чертежу - student2.ru

Способ 2 использует свойство углов с соответственно параллельными сторонами: проведя на равных расстояниях от сторон данного угла прямые А1В1и А1С1, параллельные соответственно сторонам АВ и АС, так чтобы точка их пересечения лежала внутри угла, получим угол В1А1С1, равный данному. Очевидно, что биссектриса В1А1С1 лежит на искомой биссектрисе угла ВАС.

Красивые» задачи по чертежу - student2.ru

Красивые» олимпиадные задачи

1) Олимпиадные задачи всегда пользовались успехом у учеников 5-11 классов,

приведу пример «красивой» олимпиадной задачи:

Задача

Дана белая доска размером 100*100 клеток. Двое по очереди красят ее клетки в черный цвет, причем первый всегда закрашивает квадрат 2*2, а второй—три клетки, образующие «уголок». Уже покрашенную клетку второй раз красить нельзя. Проигрывает тот, кто не может сделать очередной ход. Кто выигрывает при правильной игре: первый или второй?

Ответ: второй

 
  Красивые» задачи по чертежу - student2.ru

Рис.10

Решение. В одном из углов доски второй игрок своим первым ходом закрашивает три клетки в прямоугольнике 2x3, а три оставшиеся клетки из этого прямоугольника объявляет резервом (рис. 10). В дальнейшем второй игрок делает все возможные ходы, не затрагивая резерва. Если такой ход становится невозможным, то закрашиваются клетки резерва. Ясно, что ответного хода у первого игрока нет.

Наши рекомендации