Функциональные ряды. Область сходимости. Равномерная сходимость. Признак Вейерштрасса. Теоремы о почленном интегрировании и дифференцировании функциональных рядов
Функциональные ряды. Область сходимости.
Функциональные ряды.
Определение. Частными (частичными) суммами функционального ряда называются функции
Определение. Функциональный ряд называется сходящимся в точке (х=х0), если в этой точке сходится последовательность его частных сумм. Предел последовательности называется суммойряда в точке х0.
Определение. Совокупность всех значений х, для которых сходится ряд называется областью сходимостиряда.
Равномерная сходимость. Признак Вейерштрасса.
Определение. Ряд называется равномерно сходящимся на отрезке [a,b], если равномерно сходится на этом отрезке последовательность частных сумм этого ряда.
Теорема. (Критерий Коши равномерной сходимости ряда)
Для равномерной сходимости ряда необходимо и достаточно, чтобы для любого числа e>0 существовал такой номер N(e), что при n>N и любом целом p>0 неравенство
выполнялось бы для всех х на отрезке [a,b].
Теорема. (Признак равномерной сходимости Вейерштрасса)
(Карл Теодор Вильгельм Вейерштрасс (1815 – 1897) – немецкий математик)
Ряд сходится равномерно и притом абсолютно на отрезке [a,b], если модули его членов на том же отрезке не превосходят соответствующих членов сходящегося числового ряда с положительными членами :
т.е. имеет место неравенство:
.
Еще говорят, что в этом случае функциональный ряд мажорируетсячисловым рядом .
Теорема о почленном интегрировании функциональных рядов.
2) Теорема о почленном интегрировании ряда.
Равномерно сходящийся на отрезке [a,b] ряд с непрерывными членами можно почленно интегрировать на этом отрезке, т.е. ряд, составленный из интегралов от его членов по отрезку [a,b] , сходится к интегралу от суммы ряда по этому отрезку.
Теорема о почленном дифференцировании функциональных рядов.
3) Теорема о почленном дифференцировании ряда.
Если члены ряда сходящегося на отрезке [a,b] представляют собой непрерывные функции, имеющие непрерывные производные, и ряд, составленный из этих производных сходится на этом отрезке равномерно, то и данный ряд сходится равномерно и его можно дифференцировать почленно.
На основе того, что сумма ряда является некоторой функцией от переменной х, можно производить операцию представления какой – либо функции в виде ряда (разложения функции в ряд), что имеет широкое применение при интегрировании, дифференцировании и других действиях с функциями.
На практике часто применяется разложение функций в степенной ряд.