Тема 3.4. Производная по направлению

Пусть в плоскости XOY расположена точка M0(x0,y0). Зададим произвольный угол a и рассмотрим множество точек на той же плоскости, координаты которых определяются из формул

x = x0 + t cosa, y = y0 + t sina. (3.4.1)

Здесь t ‑ параметр, который может быть равен любому числу. Из формул (3.4.1) следует:

(y - y0)/(x - x0) = tga

Это означает, что все точки M(x,y), координаты которых удовлетворяют равенствам (3.4.1), лежат на прямой, проходящей через точку M0(x0,y0) и составляющей угол a с осью OX. Каждому значению t соответствует единственная точка M(x,y), лежащая на этой прямой, причем согласно формуле (3.4.1) расстояние между точками M0(x0,y0) и M(x,y) равно t. Можно считать эту прямую числовой осью с положительным направлением, определяемым возрастанием параметра t. Обозначим положительное направление этой оси символом l.

Производной функции z = f(x,y) в точке M0(x0,y0)по направлению l называется число

Тема 3.4. Производная по направлению - student2.ru . (3.4.2)

Производной функции по направлению можно дать геометрическую интерпретацию. Если через прямую l, определяемую формулами (3.4.1), провести вертикальную плоскость P (на самом деле в трехмерном пространстве уравнения (3.4.1) определяют эту самую плоскость), то эта плоскость пересечет поверхность-график функции z = f(x,y)вдоль

Тема 3.4. Производная по направлению - student2.ru

некоторой пространственной кривой L. Тангенс угла между горизонтальной плоскостью и касательной к этой кривой в точке M0(x0,y0)равен производной функции в этой точке по направлению l.

Тема 3.4. Производная по направлению - student2.ru В любом курсе математического анализа доказывается, что производная по направлению, определяемая формулой (3.4.2), может быть представлена в виде

Тема 3.4. Производная по направлению - student2.ru . (3.4.3) (3)

Заметим, что частная производная по x тоже является производной по направлению. Это направление определяется равенствами: cosa = 1; sina = 0. Аналогично частная производная по y — это производная по направлению, которое можно задать условиями cosa = 0; sina = 1.

Прежде, чем анализировать формулу (3.4.3), приведем некоторые понятия и факты из курса векторной алгебры. Пусть в плоскости с системой координат XOY задан направленный отрезок Тема 3.4. Производная по направлению - student2.ru или (что то же самое) вектор, причем точка M0(x0,y0)является его начальной точкой, а M1(x1,y1)‑ конечной точкой. Определим координату вектора по оси OX как число, равное x1 ‑ x0, а координату по оси Тема 3.4. Производная по направлению - student2.ru , как число, равное y1 ‑ y0. Если задать упорядоченную пару любых чисел a и b, то эти числа можно рассматривать как координаты некоторого вектора Тема 3.4. Производная по направлению - student2.ru в плоскости XOY, причем длина этого вектора определена формулой

Тема 3.4. Производная по направлению - student2.ru ,

а тангенс угла наклона g вектора к оси OX определяется из формулы tgg = b/a (отметим, что зная величину tgg , а также знак любого из чисел a и b, мы можем определить угол g с точностью до 2p ).

Представление вектора в виде пары его координат будем записывать в виде Тема 3.4. Производная по направлению - student2.ru или Тема 3.4. Производная по направлению - student2.ru . Такое представление имеет одну характерную особенность: оно не определяет местоположение вектора на плоскости XOY. Чтобы его определить, нужно наряду с координатами вектора задавать, например, координаты его начальной точки или, как её можно назвать, точки приложения вектора.

Если заданы два вектора: Тема 3.4. Производная по направлению - student2.ru и Тема 3.4. Производная по направлению - student2.ru , то скалярным произве­дением Тема 3.4. Производная по направлению - student2.ru этих векторов называется число Тема 3.4. Производная по направлению - student2.ru (j‑ угол между векторами).

В любом курсе векторной алгебры доказывается, что скалярное произведение векторов Тема 3.4. Производная по направлению - student2.ru и Тема 3.4. Производная по направлению - student2.ru равно сумме произведений одноименных координат этих векторов:

Тема 3.4. Производная по направлению - student2.ru = a1b1 + a2b2. (3.4.4)

Пусть в некоторой области G плоскости XOYзадана функция z = f(x,y), имеющая непрерывные частные производные по обоим аргументам. Градиентом или вектором-градиентом Тема 3.4. Производная по направлению - student2.ru функции f(x,y) в точке (x,y) Î G называется вектор, который задается формулой

Тема 3.4. Производная по направлению - student2.ru .

Функция f определяет для каждой точки области G вектор-градиент, исходящий из этой точки.

Возвратимся теперь к формуле (3.4.3). Ее правую часть мы можем рассматривать, как скалярное произведение векторов. Первый из них ‑ вектор-градиент функции z = f(x,y)в точке M0(x0,y0):

Тема 3.4. Производная по направлению - student2.ru .

Второй – вектор Тема 3.4. Производная по направлению - student2.ru . Это вектор, имеющий длину 1 и угол наклона к оси Тема 3.4. Производная по направлению - student2.ru , равный a.

Теперь можно сделать вывод, что производная функции z = f(x,y)по направлению, определяемому углом a наклона к оси OX, в точке M0(x0,y0) может быть вычислена по формуле

Тема 3.4. Производная по направлению - student2.ru . (3.4.5)

Здесь b ‑ угол между вектором Тема 3.4. Производная по направлению - student2.ru и вектором Тема 3.4. Производная по направлению - student2.ru , задающим направление, по которому берется производная. Здесь также учтено, что Тема 3.4. Производная по направлению - student2.ru .

Из формулы (3.4.5) можно сделать очень важное заключение: производная по направлению от функции z = f(x,y) в точке M0(x0,y0)достигает наибольшего значения, если это направление совпадает с направлением вектора-градиента функции в рассматриваемой точке, так как cosb £1, и равенство достигается только если b = 0 (очевидно, что другие решения уравнения cosb = 1 нас в данном случае не инте­ресуют). Иначе можно сказать, что вектор-градиент функции в точке направлен в сторону наискорейшего возрастания функции в этой точке.

Кроме того из формулы (3.4.5) следует, что наибольшее значение производной по направлению в точке или наибольшее значение скорости возрастания функции в точке равно длине вектора-градиента функции в этой точке.

Пример. Требуется найти производную функции Тема 3.4. Производная по направлению - student2.ru по направлению, составляющему угол в 60° с осью OX, в точке (1;3).

Найдем частные производные функции: Тема 3.4. Производная по направлению - student2.ru Теперь можно определить градиент функции в точке (1;3): Тема 3.4. Производная по направлению - student2.ru . Принимая во внимание равенство Тема 3.4. Производная по направлению - student2.ru , воспользуемся формулой (3.4.4):

Тема 3.4. Производная по направлению - student2.ru .

Наши рекомендации