Отыскание правосторонней критической области

Для отыскания правосторонней критической области достаточно найти критическую точку. Для ее нахождения задаются достаточной малой вероятностью - уровнем значимости a. Затем ищут критическую точку kкр , исходя из требования, чтобы при условии справедливости нулевой гипотезы вероятность того, что критерий К примет значение, большее kкр , была равна принятому уровню значимости:

Р(К > kкр) = a. (*)

Для каждого критерия имеются соответствующие таблицы или встроенные функции, по которым и находят критическую точку, удовлетворяющую этому требованию.

Когда критическая точка уже найдена, вычисляют по данным выборок наблюденное значение критерия и, если окажется, что Кнабл > kкр , то нулевую гипотезу отвергают; если же Кнабл < kкр , то нет оснований, чтобы отвергнуть нулевую гипотезу.

Поскольку вероятность события Кнабл > kкр мала (a - малая вероятность), такое событие при справедливости нулевой гипотезы, в силу принципа практической невозможности маловероятных событий, в единичном испытании не должно наступить. Если все же оно произошло, т. е. наблюдаемое значение критерия оказалось больше kкр, то это можно объяснить тем, что нулевая гипотеза ложна и, следовательно, должна быть отвергнута. Таким образом, требование (*) определяет такие значения критерия, при которых нулевая гипотеза отвергается, а они и составляют правостороннюю критическую область.

Наблюдаемое значение критерия может окасаться большим kкр не потому, что нулевая гипотеза ложна, а по другим причинам (малый объем выборки, недостатки методики эксперимента и др.). В этом случае, отвергнув правильную нулевую гипотезу, совершают ошибку первого рода. Вероятность этой ошибки равна уровню значимости a. Итак, пользуясь требованием (*), мы с вероятностью a рискуем совершить ошибку первого рода.

Пусть нулевая гипотеза принята; ошибочно думать, что тем самым она доказана. Действительно, известно, что один пример, подтверждающий справедливость некоторого общего утверждения, еще не доказывает его. Поэтому-более правильно говорить «данные наблюдений согласуются с кулевой гипотезой и, следовательно, не дают оснований ее отвергнуть».

На практике для большей уверенности принятия гипотезы ее проверяют другими способами или повторяют эксперимент, увеличив объем выборки.

Отвергают гипотезу более категорично, чем принимают. Действительно, известно, что достаточно привести один пример, противоречащий некоторому общему утверждению, чтобы это утверждение отвергнуть. Если оказалось, что наблюдаемое значение критерия принадлежит критической области, то этот факт и служит примером, противоречащим нулевой гипотезе, что позволяет ее отклонить.

Отыскание левосторонней и двусторонней критических областей

Отыскание левосторонней и двусторонней критических областей сводится (так же, как и для правосторонней) к нахождению соответствующих критических точек.

Левосторонняя критическая область определяется неравенством K < kкр . Критическую точку находят исходя из требования, чтобы при справедливости нулевой гипотезы вероятность того, что критерий примет значение, меньшее kкр, была равна принятому уровню значимости:

Р(К > kкр) = a.

Двусторонняя критическая область определяется (см. § 4) неравенствами К < k1 , К > k2. Критические точки находят исходя из требования, чтобы при справедливости нулевой гипотезы сумма вероятностей того, что критерий примет значение, меньшее k1 или большее k2, была равна принятому уровню значимости:

P(K < k1) + P(K < k2) =a. (*)

Ясно, что критические точки могут быть выбраны бесчисленным множеством способов. Если же распределение критерия симметрично относительно нуля и имеются основания выбрать симметричные относительно нуля точки
-kкр и kкр (kкр> 0), то

P(K < -kкр) = P(K > kкр)

Учитывая (*), получим

P(K > kкр) = a/2.

Это соотношение и служит для отыскания критических точек двусторонней критической области.

Дополнительные сведения о выборе критической области.

Мощность критерия

Мы строили критическую область, исходя из требования, чтобы вероятность попадания в нее критерия была равна a при условии, что нулевая гипотеза справедлива. Оказывается целесообразным ввести в рассмотрение вероятность попадания критерия в критическую область при условии, что нулевая гипотеза неверна и, следовательно, справедлива конкурирующая.

Мощностью критерия называют вероятность попадания критерия в критическую область при условии, что справедлива конкурирующая гипотеза. Другими словами, мощность критерия есть вероятность того, что нулевая гипотеза будет отвергнута, если верна конкурирующая гипотеза.

Пусть для проверки гипотезы принят определенный уровень значимости и выборка имеет фиксированный объем. Остается произвол в выборе критической области. Покажем, что ее целесообразно построить так, чтобы мощность критерия была максимальной. Предварительно убедимся, что если вероятность ошибки второго рода (принять неправильную гипотезу) равна b, то мощность равна 1 - b. Действительно, если b - вероятность ошибки второго рода, т. е. события «принята нулевая гипотеза, причем справедлива конкурирующая», то мощность критерия равна 1 - b.

Пусть мощность 1 - b возрастает; следовательно, уменьшается вероятность b совершить ошибку второго рода. Таким образом, чем мощность больше, тем вероятность ошибки второго рода меньше.

Итак, если уровень значимости уже выбран, то критическую область следует строить так, чтобы мощность критерия была максимальной. Выполнение этого требования должно обеспечить минимальную ошибку второго рода, что, конечно, желательно.

Замечание 1. Поскольку вероятность события «ошибка второго рода допущена» равна b, то вероятность противоположного события «ошибка второго рода не допущена» равна 1 - b, т. е. мощности критерия. Отсюда следует, что мощность критерия есть вероятность того, что не будет допущена ошибка второго рода.

Замечание 2. Ясно, что чем меньше вероятности ошибок первого и второго рода, тем критическая область «лучше». Однако при заданном объеме выборки уменьшить одновременно a и b невозможно; если уменьшить a, то b будет возрастать.


ОДНОФАКТОРНЫЙ ДИСПЕРСИОННЫЙ АНАЛИЗ

Наши рекомендации