Основные этапы исследования при системном анализе
Системных подход есть формализованная технико-экономическая реа-лизация основных положений диалектики о единстве, взаимосвязанности,
целостности явлений и вечного движения материи во времени и пространстве [2, 3, 4]. Системный подход опирается на признание объективного характера всеобщей связи, причинной обусловленности явлений, господства необходи-мости, правильного сочетания необходимости и случайности. Методология системного подхода опирается на четыре главных положения:
1) окружающая действительность должна изучаться в ее единстве, развитии и целостности;
2) наши знания окружающей действительности всегда относительны, ибо они отражают неполную информацию о совокупности тех или иных событий, явлений, свойств изучаемых явлений;
3) в природе и обществе, в производительных силах и производственных отношениях всегда прослеживаются причинно-следственные связи, которые являются проявлением объективных законов развития природы и общества;
4) все события, явления должны изучаться с учетом конкретных физи-ческих и исторических условий, их социальной сущности, социальных связей и связей во времени.
Применительно к задачам оптимизации системный подход опирается на важнейшее положение о том, что в основе оптимизации всего народного хозяйства и всех его частей лежит общий критерий оптимальности.
Подход к любым задачам оптимизации развития любых входящих в народное хозяйство производственно-экономических систем должен быть подчинен указанному общему критерию и именно это является отправным моментом системного подхода в современных условиях. Этот подход пред-ставляет собой органическое единство следующих основных принципов исследования:
1) система должна рассматриваться именно как система, как единое целое, а не как простая совокупность составляющих ее элементов. Именно отсюда и возник термин «системный подход»;
2) система всегда находится, с одной стороны, в окружении других систем, в том числе систем других типов, и испытывает на себе их влияние, с другой стороны, она находится на некотором уровне иерархии систем данного типа и ее управление также обладает свойствами иерархичности;
3) в основе оптимизации должны лежать предварительно и достаточно четко сформулированные цели решения. Эти цели должны быть конкретным выражением общего критерия оптимальности народного хозяйства примени-тельно к данной системе и данной задаче;
4) оптимизационная модель системы должна учитывать все определяю-щие свойства системы (не вообще все без разбора, но именно определяющие), с помощью которых можно составить достаточно полную картину поведения системы в заданном смысле. Должны быть также учтены и соответствующие связи системы с окружающей средой;
5) полученное решение в ходе его реализации должно с течением вре-мени корректироваться и дополняться с учетом вновь появившихся, ранее не учтённых обстоятельств или возможных уточнений использованной ранее
информации. Иначе говоря, реализация решений должна быть адаптивной.
Системный подход определяет концепцию изучения систем. Однако для получения тех или иных решений требуется определенная последовательность изучения, при которой используется совокупность методов, предназначенных для изучения сложных систем. Эта совокупность методов системного подхода получила специальное название – системный анализ. В дальнейшем на этом остановимся несколько подробнее.
Как отмечалось, большие системы самой различной природы имеют много общего. Поэтому имеет смысл рассмотреть некоторые самые общие положения о тех научных подходах, которые в настоящее время развиваются для изучения больших систем.
В связи с возрастанием роли больших технико-экономических систем в общем процессе прогресса общества все острее встают вопросы оптимального управления этими системами с позиций удовлетворения общего критерия оптимальности развития, общества (см. 1.2).
Этот глобальный критерий развития общества находит свое выражение в совокупности так называемых частных критериев. К ним относятся отдельные: социальные, экономические, военные, технические, демографические и др. Частные критерии должны соответствовать указанной выше глобальной цели. На этом этапе широко привлекаются различные формальные методы.
В силу указанных свойств больших систем применяемые к ним управ-ляющие воздействия являются результатом совокупности решений самых раз-нообразных задач, требующих, использования различных, как строгих фор-мальных математических, так и неформальных методов. Именно этой цели и служит синтезирующая дисциплина – системный анализ [5]. Само название «системный анализ» указывает на то, что эта дисциплина предназначена для анализа состояний систем. Однако анализ как таковой важен не только для понимания системы и протекающих в ней процессов, но и для принятия реше-ний, т.е. задач синтеза. Именно это является одной из центральных проблем, которыми занимается системный анализ[5]. В математическом плане систем-ный анализ опирается на все многообразие современных методов исследова-ния операций с использованием ЭВМ, включая линейное, нелинейное и дина-мическое программирование, теорию игр, теорию распознавания образов, тео-рию планирования экспериментов и др. Широко используется математическая статистика. Вместе с формальными методами математики, системный анализ использует и неформальные методы, включая логические процедуры, эвристи-ческие приемы и итеративные диалоговые процедуры, экспертные методы и оценки, опирающиеся на творческие возможности, опыт и интуицию иссле-дователя и лица, принимающего решение (ЛПР).
Таким образом, системный анализ выходит за рамки только формаль-ных математических методов. Основные принципы этого заключаются в сле-дующем. Системный анализ предполагает, что для получения решения, необходимо выполнить следующие основные этапы исследования:
1. Постановка задачи – выбор исследуемой системы и определение её границ, формулировка целей управления.
2. Составление математической модели системы:
а) определение параметров системы и управления и допустимых облас-тей их изменения;
б) формирование целевых (критериальных) функционалов (или функ-ций) для оценки соответствия поведения системы поставленным целям.
3. Выбор метода решения задачи.
4. Прогнозирование движения системы – определение множества воз-можных траекторий (альтернатив) поведения системы в зависимости от управ-ляющих возможностей.
5. Планирование оптимального движения системы и управляющих воз-действий на основе принятых критериев.
Формирование каждого из перечисленных этапов использует как фор-мальные, так и неформальные процедуры и методы.
Каковы бы ни были исходные условия и цели решения» всегда неизмен-ным и обязательным является условие согласованности между математической моделью системы и математическими методами решения. Выбор модели и метода решения выполняется всегда совместно и согласованно, хотя, конечно, главным здесь является выбор модели. Производственные энергосистемы, мехатронные системы и агроэкосистемы относятся к числу таких систем, структуры которых считаются достаточно хорошо известными (применитель-но к оптимизационным задачам). Поэтому при их исследовании большую роль играют формальные математические модели и методы. Далее будут рассмот-рены некоторые самые общие и начальные положения о формировании таких моделей. Начальные сведения о методах оптимизации изложены в других параграфах. Оптимизация – это такое действие, которое отвечает на вопрос: что надо сделать, чтобы получить наилучший результат с точки зрения пос-тавленной цели?