Рактические рекомендации к составлению формулы мицеллы
еоретический комментарий и типовые задачи.
В свете представлений об образовании на поверхности агрегата двойного электрического слоя по модели Гельмгольца -Гуи - Штерна плотная часть ДЭС является, с одной стороны, адсорбционным слоем, а с другой - слоем ионов, сообщающих заряд поверхности коллоидной частицы. Адсорбцию ионов на кристаллических поверхностях можно прогнозировать с помощью правила Фа-нета - Пескова - Фаянса. Правило заключается в том, что на поверхности кристаллического агрегата энергично адсорбируются из окружающего раствора
ионы, способные достраивать кристаллическую решетку или образовывать с противоположно заряженными ионами кристаллической поверхности малорастворимые соединения, т.е. ионы одинаковые или изоморфные с ионами, находящимися на поверхности кристалла.
Из этого правила следует, что если агрегатом является нерастворимое в дисперсной среде кристаллическое вещество, которое получается в результате химической реакции, то потенциалопределяющим веществом и в то же время стабилизатором мицеллы будет один из ионов реагента, взятого в избытке.
В зависимости от природы стабилизатора на основе одного и того же агрегата возможно образование мицелл двух видов. Варианты строения мицеллы золя, дисперсная фаза которого получается в присутствии избытка одного из реагентов по реакции AgN03+ KJ = AgI + KNO3 , представлены формулами ниже.
Коллоидная частица заряжена положительно. AgNO3 взято в избытке.
Стабилизатор - ионы металла Ag+:
{[mAgJ] nAg+ (n-x)N03} xNO3
1 2 3 4
агрегат адсорбционный диффузный
слой слой
Коллоидная частица заряжена отрицательно. KJ в избытке. Стабилизатор
- ионы I-.
{[mAgJ] n I- (n-х)K+} х K+
1 2 3 4
агрегат адсорбционный диффузный
слой слой
Составные части коллоидной мицеллы:
Агрегат(1) - мельчайший кристаллик, состоящий из некоторого количества молекул нерастворимого в дисперсной среде вещества.
Ядро включает агрегат (1) и потенциалопределяющие ионы (2), входящие в адсорбционный слой (ионы стабилизатора);
Частица включает ядро и противоионы (3) адсорбционного слоя; Мицелла включает частицу и противоионы (4) диффузного слоя.
Следует отметить, что хотя число ионов в адсорбционном и диффузном слоях и выбирается произвольно, оно должно удовлетворять условию электронейтральности.
Надо также учитывать, что в соответствии с теорией двойного слоя диффузный слой Гуи на мицелле образует сольватированные ионы конечных размеров. Поэтому не следует включать в число возможных противоионов диффузного слоя частицы H+, размеры которых не определены и, по-видимому, соразмерны протону.
При написании предполагаемой формулы мицеллы надо также следить, чтобы ионы адсорбционного и диффузионного слоев не повторяли состав агре-
гата. Если, например, агрегатом служит AgJ, то потенциалопределяющим ионом может быть либо Ag+, либо I-. Однако в этом случае ни один из названных ионов не может служить противоионом. В противном случае это создало бы условия для дальнейшей кристаллизации и выпадения осадка, но не получения золя. В качестве противоионов желательно использовать ионы, существенно отличающиеся от ионов, образующих агрегат. Кроме того, противоионы не должны связывать ионы агрегата в малорастворимые соединения. Для агрегата на основе AgJ, стабилизированного серебром, можно в качестве противоионов использовать частицы NO3-, но ни I- или S042-. В присутствии ионов йода кристаллизация продолжится, а в присутствии ионов SO42-, которые образуют с ионами серебра плохорастворимую соль, коллоидная частица будет разрушена.
Варианты формулы мицеллы на основе AgJ приведены выше.
При избытке Ag NO3 формула выглядит следующим образом:
{[n AgJ] mAg+ (m - х) NO3- } xNO3-
Следует иметь в виду, что при такой записи мицеллы заряд частицы соот-
ветствует сумме зарядов потенциалобразующих ионов и противоионов в адсорбционном слое. Поэтому он равен х. Однако в общем случае это не так, поскольку действительный заряд частицы следует рассчитывать с учетом электрокинетических свойств рассматриваемого золя.
иповая задача
1. Определить молекулярную массу Мг синтетического каучука, если известно, что характеристическая вязкость его раствора в хлороформе [n] = 0,0215, константы уравнения Марка - Хаувинка K=1,85 10 -5 и = 0,56.
Решение. Из уравнения Марка - Хаувинка следует, что [n] =К Mra , a
также t
lg[n] = lgK+ lg Mr Решаем последнее уравнение с учетом численных данных относительно lg Mr
Отсюда: lg Мг = 5,477 и Мr= 3 105