Пример. Построение аддитивной модели временного ряда

Обратимся к данным, представленным в табл. 4.1.

Было показано, что данный временной ряд содержит сезонные колебания периодичностью 4, т.к. объем потребления электроэнергии в первый-второй кварталы ниже, чем в третий-четвертый. Рассчитаем компоненты аддитивной модели временного ряда.

Шаг 1. Проведем выравнивание исходных уровней ряда методом скользящей средней. Для этого:

1.1. Просуммируем уровни ряда последовательно за каждые четыре квартала со сдвигом на один момент времени и определим условные годовые объемы потребления электроэнергии (гр. 3 табл. 4.5).

1.2. Разделив полученные суммы на 4, найдем скользящие средние (гр. 4 табл. 4.5). Полученные таким образом выровненные значения уже не содержат сезонной компоненты.

1.3. Приведем эти значения в соответствие с фактическими моментами времени, для чего найдем средние значения из двух последовательных скользящих средних – центрированные скользящие средние (гр. 5 табл. 4.5).

Таблица 4.5

№ квартала, t Объем потребления электроэнергии, Пример. Построение аддитивной модели временного ряда - student2.ru Итого за четыре квартала Скользящая средняя за четыре квартала Центрированная скользящая средняя Оценка сезонной компоненты
657,5
655,25 213,75
665,5 349,5
708,75 693,75 ‑336,75
709,375 ‑238,375
718,25 714,125 277,875
689,25 703,75 316,25
689,25 689,25 ‑299,25
660,5 674,875 ‑319,875
678,25 669,375 322,625
690,625 214,375
‑233
690,5 687,75 ‑233,75

Шаг 2. Найдем оценки сезонной компоненты как разность между фактическими уровнями ряда и центрированными скользящими средними (гр. 6 табл. 4.5). Используем эти оценки для расчета значений сезонной компоненты S (табл. 4.6). Для этого найдем средние за каждый квартал (по всем годам) оценки сезонной компоненты Пример. Построение аддитивной модели временного ряда - student2.ru . В моделях с сезонной компонентой обычно предполагается, что сезонные воздействия за период взаимопогашаются. В аддитивной модели это выражается в том, что сумма значений сезонной компоненты по всем кварталам должна быть равна нулю.

Таблица 4.6

Показатели Год № квартала, i
I II III IV
213,75 349,5
‑336,75 ‑238,375 277,875 316,25
‑299,25 ‑319,875 322,625 214,375
‑233 ‑233,75
Всего за i‑й квартал   ‑869 ‑792 814,25 880,125
Средняя оценка сезонной компоненты для i‑го квартала, Пример. Построение аддитивной модели временного ряда - student2.ru   ‑289,667 ‑264 271,417 293,375
Скорректированная сезонная компонента, Пример. Построение аддитивной модели временного ряда - student2.ru   ‑292,448 ‑266,781 268,636 290,593

Для данной модели имеем:

Пример. Построение аддитивной модели временного ряда - student2.ru .

Корректирующий коэффициент: Пример. Построение аддитивной модели временного ряда - student2.ru .

Рассчитываем скорректированные значения сезонной компоненты ( Пример. Построение аддитивной модели временного ряда - student2.ru ) и заносим полученные данные в таблицу 4.6.

Проверим равенство нулю суммы значений сезонной компоненты:

Пример. Построение аддитивной модели временного ряда - student2.ru .

Шаг 3. Исключим влияние сезонной компоненты, вычитая ее значение из каждого уровня исходного временного ряда. Получим величины Пример. Построение аддитивной модели временного ряда - student2.ru (гр. 4 табл. 4.7). Эти значения рассчитываются за каждый момент времени и содержат только тенденцию и случайную компоненту.

Шаг 4. Определим компоненту T данной модели. Для этого проведем аналитическое выравнивание ряда ( Пример. Построение аддитивной модели временного ряда - student2.ru ) с помощью линейного тренда. Результаты аналитического выравнивания следующие:

Пример. Построение аддитивной модели временного ряда - student2.ru .

Подставляя в это уравнение значения Пример. Построение аддитивной модели временного ряда - student2.ru , найдем уровни T для каждого момента времени (гр. 5 табл. 4.7).

Шаг 5. Найдем значения уровней ряда, полученные по аддитивной модели. Для этого прибавим к уровням T значения сезонной компоненты для соответствующих кварталов (гр. 6 табл. 4.7).

На одном графике отложим фактические значения уровней временного ряда и теоретические, полученные по аддитивной модели.

Таблица 4.7

t Пример. Построение аддитивной модели временного ряда - student2.ru Пример. Построение аддитивной модели временного ряда - student2.ru Пример. Построение аддитивной модели временного ряда - student2.ru T Пример. Построение аддитивной модели временного ряда - student2.ru Пример. Построение аддитивной модели временного ряда - student2.ru Пример. Построение аддитивной модели временного ряда - student2.ru
‑292,448 667,448 672,700 380,252 ‑5,252 27,584
‑266,781 637,781 673,624 406,843 ‑35,843 1284,721
268,636 600,364 674,547 943,183 ‑74,183 5503,117
290,593 724,407 675,470 966,063 48,937 2394,830
‑292,448 649,448 676,394 383,946 ‑26,946 726,087
‑266,781 737,781 677,317 410,536 60,464 3655,895
268,636 723,364 678,240 946,876 45,124 2036,175
290,593 729,407 679,163 969,756 50,244 2524,460
‑292,448 682,448 680,087 387,639 2,361 5,574
‑266,781 621,781 681,010 414,229 ‑59,229 3508,074
268,636 723,364 681,933 950,569 41,431 1716,528
290,593 614,407 682,857 973,450 ‑68,450 4685,403
‑292,448 753,448 683,780 391,332 69,668 4853,630
‑266,781 720,781 684,703 417,922 36,078 1301,622
268,636 651,364 685,627 954,263 ‑34,263 1173,953
290,593 636,407 686,550 977,143 ‑50,143 2514,320

Пример. Построение аддитивной модели временного ряда - student2.ru

Рис. 4.6.

Для оценки качества построенной модели применим сумму квадратов полученных абсолютных ошибок.

Пример. Построение аддитивной модели временного ряда - student2.ru .

Следовательно, можно сказать, что аддитивная модель объясняет 97% общей вариации уровней временного ряда по кварталам за 4 года.

Шаг 6. Прогнозирование по аддитивной модели. Предположим, что по нашему примеру необходимо дать прогноз об общем объеме потребления электроэнергии на I и II кварталы 2003 года. Прогнозное значение Пример. Построение аддитивной модели временного ряда - student2.ru уровня временного ряда в аддитивной модели есть сумма трендовой и сезонной компонент. Для определения трендовой компоненты воспользуемся уравнением тренда

Пример. Построение аддитивной модели временного ряда - student2.ru .

Получим

Пример. Построение аддитивной модели временного ряда - student2.ru ;

Пример. Построение аддитивной модели временного ряда - student2.ru .

Значения сезонных компонент за соответствующие кварталы равны: Пример. Построение аддитивной модели временного ряда - student2.ru и Пример. Построение аддитивной модели временного ряда - student2.ru . Таким образом,

Пример. Построение аддитивной модели временного ряда - student2.ru ;

Пример. Построение аддитивной модели временного ряда - student2.ru .

Т.е. в первые два квартала 2003 г. следовало ожидать объема потребления электроэнергии порядка 395 и 422 кВт соответственно.

Построение мультипликативной модели рассмотрим на данных предыдущего примера.

Шаг 1. Методика, применяемая на этом шаге, полностью совпадает с методикой построения аддитивной модели.

Таблица 4.8

№ квартала, t Объем потребления электроэнергии, Пример. Построение аддитивной модели временного ряда - student2.ru Итого за четыре квартала Скользящая средняя за четыре квартала Центрированная скользящая средняя Оценка сезонной компоненты
657,5
655,25 1,3262
665,5 1,5252
708,75 693,75 0,5146
709,375 0,6640
718,25 714,125 1,3891
689,25 703,75 1,4494
689,25 689,25 0,5658
660,5 674,875 0,5260
678,25 669,375 1,4820
690,625 1,3104
0,6643
690,5 687,75 0,6601

Шаг 2. Найдем оценки сезонной компоненты как частное от деления фактических уровней ряда на центрированные скользящие средние (гр. 6 табл. 4.8). Эти оценки используются для расчета сезонной компоненты S (табл. 4.9). Для этого найдем средние за каждый квартал оценки сезонной компоненты Пример. Построение аддитивной модели временного ряда - student2.ru . Так же как и в аддитивной модели считается, что сезонные воздействия за период взаимопогашаются. В мультипликативной модели это выражается в том, что сумма значений сезонной компоненты по всем кварталам должна быть равна числу периодов в цикле. В нашем случае число периодов одного цикла равно 4.

Таблица 4.9

Показатели Год № квартала, i
I II III IV
1,3262 1,5252
0,5146 0,6640 1,3891 1,4494
0,5658 0,5260 1,4820 1,3104
0,6643 0,6601
Всего за i-й квартал   1,7447 1,8501 4,1973 4,2850
Средняя оценка сезонной компоненты для i-го квартала, Пример. Построение аддитивной модели временного ряда - student2.ru   0,5816 0,6167 1,3991 1,4283
Скорректированная сезонная компонента, Пример. Построение аддитивной модели временного ряда - student2.ru   0,5779 0,6128 1,3901 1,4192

Имеем

Пример. Построение аддитивной модели временного ряда - student2.ru .

Определяем корректирующий коэффициент:

Пример. Построение аддитивной модели временного ряда - student2.ru .

Скорректированные значения сезонной компоненты Пример. Построение аддитивной модели временного ряда - student2.ru получаются при умножении ее средней оценки Пример. Построение аддитивной модели временного ряда - student2.ru на корректирующий коэффициент k.

Проверяем условие равенство 4 суммы значений сезонной компоненты:

Пример. Построение аддитивной модели временного ряда - student2.ru .

Шаг 3. Разделим каждый уровень исходного ряда на соответствующие значения сезонной компоненты. В результате получим величины Пример. Построение аддитивной модели временного ряда - student2.ru (гр. 4 табл. 4.10), которые содержат только тенденцию и случайную компоненту.

Таблица 4.10

t Пример. Построение аддитивной модели временного ряда - student2.ru Пример. Построение аддитивной модели временного ряда - student2.ru Пример. Построение аддитивной модели временного ряда - student2.ru T Пример. Построение аддитивной модели временного ряда - student2.ru Пример. Построение аддитивной модели временного ряда - student2.ru
0,5779 648,9012 654,9173 378,4767 0,9908
0,6128 605,4178 658,1982 403,3439 0,9198
1,3901 625,1349 661,4791 919,5221 0,9451
1,4192 715,1917 664,7600 943,4274 1,0759
0,5779 617,7539 668,0409 386,0608 0,9247
0,6128 768,6031 671,3218 411,3860 1,1449
1,3901 713,6177 674,6027 937,7652 1,0578
1,4192 718,7148 677,8836 962,0524 1,0602
0,5779 674,8572 681,1645 393,6450 0,9907
0,6128 579,3081 684,4454 419,4281 0,8464
1,3901 713,6177 687,7263 956,0083 1,0377
1,4192 637,6832 691,0072 980,6774 0,9228
0,5779 797,7159 694,2881 401,2291 1,1490
0,6128 740,8616 697,5690 427,4703 1,0621
1,3901 661,8229 700,8499 974,2515 0,9443
1,4192 653,1849 704,1308 999,3024 0,9277

Шаг 4. Определим компоненту T в мультипликативной модели. Для этого рассчитаем параметры линейного тренда, используя уровни Пример. Построение аддитивной модели временного ряда - student2.ru . В результате получим уравнение тренда:

Пример. Построение аддитивной модели временного ряда - student2.ru .

Подставляя в это уравнение значения Пример. Построение аддитивной модели временного ряда - student2.ru , найдем уровни T для каждого момента времени (гр. 5 табл. 4.10).

Шаг 5. Найдем уровни ряда, умножив значения T на соответствующие значения сезонной компоненты (гр. 6 табл. 4.10). На одном графике откладываем фактические значения уровней временного ряда и теоретические, полученные по мультипликативной модели.

Пример. Построение аддитивной модели временного ряда - student2.ru

Рис. 4.7.

Расчет ошибки в мультипликативной модели производится по формуле:

Пример. Построение аддитивной модели временного ряда - student2.ru .

Для сравнения мультипликативной модели и других моделей временного ряда можно, по аналогии с аддитивной моделью, использовать сумму квадратов абсолютных ошибок Пример. Построение аддитивной модели временного ряда - student2.ru :

Пример. Построение аддитивной модели временного ряда - student2.ru .

Сравнивая показатели детерминации аддитивной и мультипликативной моделей, делаем вывод, что они примерно одинаково аппроксимируют исходные данные.

Шаг 6. Прогнозирование по мультипликативной модели. Если предположить, что по нашему примеру необходимо дать прогноз об общем объеме потребления электроэнергии на I и II кварталы 2003 года, прогнозное значение Пример. Построение аддитивной модели временного ряда - student2.ru уровня временного ряда в мультипликативной модели есть произведение трендовой и сезонной компонент. Для определения трендовой компоненты воспользуемся уравнением тренда

Пример. Построение аддитивной модели временного ряда - student2.ru .

Получим

Пример. Построение аддитивной модели временного ряда - student2.ru ;

Пример. Построение аддитивной модели временного ряда - student2.ru .

Значения сезонных компонент за соответствующие кварталы равны: Пример. Построение аддитивной модели временного ряда - student2.ru и Пример. Построение аддитивной модели временного ряда - student2.ru . Таким образом

Пример. Построение аддитивной модели временного ряда - student2.ru ;

Пример. Построение аддитивной модели временного ряда - student2.ru .

Т.е. в первые два квартала 2003 г. следовало ожидать объема потребления электроэнергии порядка 409 и 436 кВт соответственно.

Таким образом, аддитивная и мультипликативная модели дают примерно одинаковый результат по прогнозу.

Наши рекомендации