Элементы линейной алгебры и аналитической геометрии
Контрольных работ по дисциплине
«математика»
для студентов заочной формы обучения
направления подготовки 051000. 62 Профессиональное обучение (по отраслям)
профиля «Машиностроение и материалообработка»
профиля «Транспорт»
профиля «Металлургия»
Екатеринбург
РГППУ
Задания и методические указания к выполнению контрольных работ по дисциплине «Математика». Екатеринбург, ФГАОУ ВПО «Российский государственный профессионально-педагогический университет», 2012. - 47 с.
Авторы: канд. физ.-мат. наук С.Д. Филиппов
канд. физ.-мат. наукА.В. Шитиков
ст. преподаватель Т.А. Серова
Одобрены на заседании кафедры высшей математики.
Протокол от 02.10.2012 № 2
Заведующий кафедрой Е.А.Перминов
Рекомендованы к печати методической комиссией МаИ РГППУ.
Протокол от 05.10.2012 №2
Председатель методической
комиссии МаИ РГППУ А.В.Песков
Директор МаИ А.А.Жученко
ФГАОУ ВПО
Российский государственный
Профессионально- педагогический университет», 2012
Цель контрольных работ – закрепление и проверка знаний, полученных студентами в процессе самостоятельного изучения учебного материала по данной дисциплине, а также выявление их умения применять полученные знания на практике.
Указания к выполнению контрольных работ
При выполнении контрольных работ необходимо руководствоваться следующими требованиями:
1. Вариант контрольной работы выбирать по последней цифре номера зачетной книжки.
2. Каждую контрольную работу следует выполнять в отдельной тетради.
3. На обложке тетради должны быть ясно написаны название дисциплины, номер контрольной работы, фамилия студента, его инициалы, номер группы и шифр специализации, шифр зачетной книжки.
4. В начале работы должен быть указан номер варианта задания.
5. Перед решением задачи должно быть полностью приведено ее условие.
6. Решение задач следует сопровождать необходимыми формулами, развернутыми расчетами и краткими пояснениями.
7. В конце работы должна стоять подпись студента с указанием даты ее выполнения.
8. Перечень заданий к контрольным работам приводится в таблицах 1, 2
Таблица 1. Список номеров заданий к контрольным работам для студентов, обучающихся по профилю подготовки «Машиностроение и материалообработка», «Транспорт», «Металлургия» (все профилизации), полный срок обучения
1 семестр | 2 семестр | 3 семестр | |
Контр. раб.1 | Контр. раб.2 | Контр. раб.3 | |
Номера заданий | 11-20 | 151-160 | 351-360 |
51-60 | 191-200 | 371-380 | |
91-100 | 231-240 | 321-330 | |
111-120 | 261-270 | 341-350 | |
131-140 | 281-290 | 421-430 | |
141-150 | 301-310 | 441-450 |
Таблица 2. . Список номеров заданий к контрольным работам для студентов, обучающихся по профилю подготовки «Машиностроение и материалообработка», «Транспорт», «Металлургия» (все профилизации), сокращённый срок обучения
1 семестр | 2 семестр | 2 семестр | |
Контр. раб.1 | Контр. раб.2 | Контр. раб.3 | |
Номера заданий | 11-20 | 231-240 | 321-330 |
51-60 | 251-260 | 341-350 | |
91-100 | 261-270 | 351-360 | |
111-120 | 281 (а,б)-290(а,б) | 421-430 | |
131-140 | 301-310 | 441-450 | |
141-150 | |||
191-200 |
ЗАДАНИЯ ДЛЯ КОНТРОЛЬНЫХ РАБОТ
Элементы линейной алгебры и аналитической геометрии
11-20. В пирамиде SABC: треугольник АВС – основание пирамиды, точка S – ее вершина. Даны координаты точек A, B, C, S. Сделать чертеж. Найти:
1) длину ребра АВ;
2) угол между ребрами АВ и AS;
3) угол наклона ребра AS к основанию пирамиды;
4) площадь основания пирамиды;
5) объем пирамиды;
6) уравнение прямой АВ;
7) уравнение плоскости АВС;
8) проекцию вершины S на плоскость АВС;
9) длину высоты пирамиды.
11. А(-2;0;0); В(0;3;0); C(0;0;1); S(0;2;3).
12. А(4;0;0); В(0;-8;0); C(0;0;2); S(4;6;3).
13. А(-2;0;0); В(0;6;0); C(0;0;2); S(-1;6;4).
14. А(1;0;0); В(0;2;0); C(0;0;2); S(1;1;4).
15. А(-3;0;0); В(0;-2;0); C(0;0;1); S(-2;-1;3).
16. А(6;0;0); В(0;-3;0); C(0;0;2); S(4;-3;4).
17. А(3;0;0); В(0;-6;0); C(0;0;1); S(1;-3;3).
18. А(-4;0;0); В(0;4;0); C(0;0;2); S(-2;4;3).
19. А(-6;0;0); В(0;2;0); C(0;0;3); S(-3;2;5).
20. А(-1;0;0); В(0;5;0); C(0;0;2); S(-1;3;4).
51-60. Дана система линейных уравнений:
Доказать ее совместность и решить тремя способами: 1) методом Гаусса; 2) средствами матричного исчисления; 3) по правилу Крамера.
51. 52.
53. 54.
55. 56.
57. 58.
59. 60.
Введение в математический анализ
91-100. Дано комплексное число a. Требуется: 1) записать число a в алгебраической и тригонометрической формах; 2) найти все корни уравнения z3+a=0.
91. . 92. .
93. . 94. .
95. . 96. .
97. . 98. .
99. . 100. .
111-120. Найти пределы функций, не пользуясь правилом Лопиталя.
111. а) ; б) ;
в) ; г) .
112. а) ; б) ;
в) ; г) .
113. а) ; б) ;
в) ; г) .
114. а) ; б) ;
в) ; г) .
115. а) ; б) ;
в) ; г) .
116. а) ; б) ;
в) ; г) .
117. а) ; б) ;
в) ; г) .
118. а) ; б) ;
в) ; г) .
119. а) ; б) ;
в) ; г) .
120. а) ; б) ;
в) ; г) .