Расчет несимметричных режимов трехфазных цепей, причины возникновения несимметрии
БИЛЕТ № 16.
Принцип взаимности
Принцип взаимности основан на теореме взаимности, которую сформулируем без доказательства: для линейной цепи ток в k – й ветви, вызванной единственной в схеме ЭДС , находящейся в i – й ветви,
будет равен току в i – й ветви, вызванному ЭДС , численно равной ЭДС , находящейся в k – й ветви, .
Отсюда в частности вытекает указанное выше соотношение .
Иными словами, основанный на теореме взаимности принцип взаимности гласит: если ЭДС , действуя в некоторой ветви схемы, не содержащей других источников, вызывает в другой ветви ток (см. рис. 3,а), то принесенная в эту ветвь ЭДС вызовет в первой ветви такой же ток (см. рис. 3,б).
В качестве примера использования данного принципа рассмотрим цепь на рис. 4,а, в которой требуется определить ток , вызываемый источником ЭДС .
Перенесение источника ЭДС в диагональ моста, где требуется найти ток, трансформирует исходную схему в цепь с последовательно-параллельным соединением на рис. 4,б. В этой цепи , (7)
где .
В соответствии с принципом взаимности ток в цепи на рис. 4,а равен току, определяемому соотношением (7).
Расчет несимметричных режимов трехфазных цепей, причины возникновения несимметрии.
Если хотя бы одно из условий симметрии не выполняется, в трехфазной цепи имеет место несимметричный режим работы. Такие режимы при наличии в цепи только статической нагрузки и пренебрежении падением напряжения в генераторе рассчитываются для всей цепи в целом любым из рассмотренных ранее методов расчета. При этом фазные напряжения генератора заменяются соответствующими источниками ЭДС. Можно отметить, что, поскольку в многофазных цепях, помимо токов, обычно представляют интерес также потенциалы узлов, чаще других для расчета сложных схем применяется метод узловых потенциалов. Для анализа несимметричных режимов работы трехфазных цепей с электрическими машинами в основном применяется метод симметричных составляющих, который будет рассмотрен далее.
При заданных линейных напряжениях наиболее просто рассчитываются трехфазные цепи при соединении в треугольник. Пусть в схеме на рис. 2,а . Тогда при известных комплексах линейных напряжений в соответствии с законом Ома
; ; .
По найденным фазным токам приемника на основании первого закона Кирхгофа определяются линейные токи:
.
Обычно на практике известны не комплексы линейных напряжений, а их модули. В этом случае необходимо предварительное определение начальных фаз этих напряжений, что можно осуществить, например, графически. Для этого, приняв , по заданным модулям напряжений, строим треугольник (см. рис.5), из которого (путем замера) определяем значения углов a и b.
Тогда
Искомые углы a и b могут быть также найдены аналитически на основании теоремы косинусов:
При соединении фаз генератора и нагрузки в звезду и наличии нейтрального провода с нулевым сопротивлением фазные напряжения нагрузки равны соответствующим напряжениям на фазах источника. В этом случае фазные токи легко определяются по закону Ома, т.е. путем деления известных напряжений на фазах потребителя на соответствующие сопротивления. Однако, если сопротивление нейтрального провода велико или он отсутствует, требуется более сложный расчет.
Рассмотрим трехфазную цепь на рис. 6,а. При симметричном питании и несимметричной нагрузке ей в общем случае будет соответствовать векторная диаграмма напряжений (см. рис. 6,б), на которой нейтральные точки источника и приемника занимают разные положения, т.е. .
Разность потенциалов нейтральных точек генератора и нагрузки называется напряжением смещения нейтральной точки (обычно принимается, что ) или просто напряжением смещения нейтрали. Чем оно больше, тем сильнее несимметрия фазных напряжений на нагрузке, что наглядно иллюстрирует векторная диаграмма на рис. 6,б.
Для расчета токов в цепи на рис. 6,а необходимо знать напряжение смещения нейтрали. Если оно известно, то напряжения на фазах нагрузки равны:
Тогда для искомых токов можно записать: .
Соотношение для напряжения смещения нейтрали, записанное на основании метода узловых потенциалов, имеет вид . (1)
При наличии нейтрального провода с нулевым сопротивлением , и из (1) . В случае отсутствия нейтрального провода . При симметричной нагрузке с учетом того, что , из (1) вытекает .