Упорядочение п наблюдений по мере возрастания переменной х.
2. Исключение средних наблюдений ( должно быть примерно равно четверти общего количества наблюдений).
3. Разделение совокупности на две группы (соответственно с малыми и большими значениями фактора ) и определение по каждой из групп уравнений регрессии.
4. Определение остаточной суммы квадратов для первой регрессии и второй регрессии .
5. Вычисление отношений (или ). В числителе должна быть большая сумма квадратов.
Полученное отношение имеет F распределение со степенями свободы k1=n1-k и k2=n-n1-k, (k– число оцениваемых параметров в уравнении регрессии).
Если , то гетероскедастичность имеет место.
Чем больше величина F превышает табличное значение F -критерия, тем более нарушена предпосылка о равенстве дисперсий остаточных величин.
Оценка влияния отдельных факторов на зависимую переменную на основе модели (коэффициенты эластичности, b - коэффициенты).
Важную роль при оценке влияния факторов играют коэффициенты регрессионной модели. Однако непосредственно с их помощью нельзя сопоставить факторы по степени их влияния на зависимую переменную из-за различия единиц измерения и разной степени колеблемости. Для устранения таких различий при интерпретации применяются средние частные коэффициенты эластичности Э(j) и бета-коэффициенты b(j).
Эластичность Y по отношению к Х(j) определяется как процентное изменение Y, отнесенное к соответствующему процентному изменению Х. В общем случае эластичности не постоянны, они различаются, если измерены для различных точек на линии регрессии. По умолчанию стандартные программы, оценивающие эластичность, вычисляют ее в точках средних значений:
Эластичность ненормирована и может изменяться от - до + . Важно, что она безразмерна, так что интерпретация эластичности =2.0 означает, что если изменится на 1%, то это приведет к изменению на 2%. Если =-0.5, то это означает, что увеличение на 1% приведет к уменьшению на 0.5%.
Высокий уровень эластичности означает сильное влияние независимой переменной на объясняемую переменную.
где Sxj — среднеквадратическое отклонение фактора j
где .
Коэффициент эластичности показывает, на сколько процентов изменяется зависимая переменная при изменении фактора j на один процент. Однако он не учитывает степень колеблемости факторов.
Бета-коэффициент показывает, на какую часть величины среднего квадратического отклонения Sy изменится зависимая переменная Y с изменением соответствующей независимой переменной Хj на величину своего среднеквадратического отклонения при фиксированном на постоянном уровне значении остальных независимых переменных.
Указанные коэффициенты позволяют упорядочить факторы по степени влияния факторов на зависимую переменную.
Долю влияния фактора в суммарном влиянии всех факторов можно оценить по величине дельта - коэффициентов D (j):
где — коэффициент парной корреляции между фактором j (j = 1,...,m) и зависимой переменной.