Основные этапы в решении задачи. Общие умения по решению задач

Процесс решения учебной задачи можно разделить на 4 основные этапы: осмысление условия задачи (анализ условия), поиск и составление плана решения, осуществление плана решения, изучение (исследование) найденного решения.

Осмысление условия задачи (1 этап).

- Осознание условия и требования задачи, усвоение и разработка элементов условия (или элементов цели).

- Поиск необходимой информации в сложной системе памяти.

- Соотнесение условия и заключения задачи с имеющимися зна­ниями и опытом.

Составление плана решения задачи (2-й этап).

- Целенаправленные пробы различных сочетаний из данных и ис­комых.

- Попытки подвести задачу под известный тип.

- Выбор наиболее приемлемого в данных условиях метода решения (из известных).

- Выбор стратегии решения, поиск плана решения и его корректи­ровка на основе предварительной апробации, соотнесения с условием задачи и интуитивными соображениями, фиксирование определенно­го плана решения задачи и т.д.

Осуществление плана решения задачи (3-й этап).

- Проводится практическая реализация плана решения во всех его деталях с одновременной корректировкой через соотнесение с услови­ем и выбранным базисом, выбор способа оформления решения, запись результата и т.д.

Изучение найденного решения задачи (4-й этап).

- Фиксация конечного результата решения.

- Критический анализ результата (взгляд назад), поиск путей рационализации решения, исследование особых и частных случаев, выявление сущест­венного (потенциально полезного), систематизация новых знаний и опыта и т.д.

Умение самостоятельно решать задачи - важное умение не только для тех, кто будет в дальнейшей жизни заниматься мате­матикой, но и для всех учащихся. Человеку в повседневной жиз­ни приходится постоянно решать задачи и даже ставить их, прав­да, они несколько отличаются от школьных задач, иногда своей неопределенностью, иногда неразрешимостью. Умение органи­зовать поиск - черта активной, самостоятельной личности. Уме­ние самостоятельно решать задачи является показателем высоко­го интеллектуального развития. К сожалению, в школьной прак­тике довольно часто можно наблюдать отсутствие этого умения. Из каких составляющих, из каких отдельных умений складыва­ется общее умение решать задачи?

Это: 1) умение проводить анализ условия задачи;

2) умение применять изученную теорию (определение, теорему, правило) на практике. Это умение предполагает узнавание возможности применения теории и собственно применение, поэто­му теорема, определение, правило принимают в сознании вид алгоритма или предписания, по которому совершается дей­ствие;

3) умение выделять основную идею в решении отдельной задачи, находить общее в решении нескольких задач и переносить эту идею, это общее на новую задачу;

4) умения по самооценке своей деятельности, самоконтролю.

Анализ условия задачи состоит в выделе­нии данных и искомых, в выяснении значения каждого слова, в выяснении структуры задачи: какая и сколько ситуаций, объек­тов рассматриваются, какие величины входят в рассмотрение, каково соотношение между величинами в данной задаче, какая информация имеется в условии задачи в скрытом виде.

При решении каждой задачи, способ решения которой неизве­стен, используются синтетический и аналитический методы - про­исходит встречный процесс от данных к требованию (синтез) и от требований к данным (анализ). На каком-то шаге устанавлива­ется связь этих двух процессов - находится недостающий эле­мент, отношение - задача решена.

К какому бы разделу математики задача ни относилась, при ее решении происходит получение следствий из условия, какие-то условия заменяются эквивалентными, переформулируются, при­обретают более удобный для операций вид, какие-то условия свя­зываются. Установление связей между данными происходит не хаотично, а после выяснения отношений между данными под воз­действием промежуточных и окончательных целей. Нахождение новых величин, отношений носит целенаправленный характер.

В процессе осмысления условия задачи (1 этап) можно выделить:

1). Умение анализировать требование задачи.

Под анализом требования задачи понимается выяснение возможных путей ответа на вопрос задачи. Одним из важнейших компонентов умения анализировать требование задачи является умение преобразовывать требование задачи в ему равносильное.

Например, докажем, что четырехугольник АВСD – квадрат, если докажем, что он поворотом на 90º отображается на себя.

Формирование этого умения связано с вооружением учащихся как можно большим числом признаков и свойств понятий;

2). Умение анализировать условие задачи.

Под анализом условия задачи можно понимать выявление такой информации, которая непосредственно не задана условием, но присуща ему.

Вся информация может быть разделена на три вида: а) информация, непосредственно заданная в условии; б) информация, полученная непосредственно из условия; в) информация, полученная уже из новой, то есть выведенной ранее, информации.

Информация первого вида фиксируется чертежом и специальной записью под названием «дано».

Информация второго и третьего видов может быть получена следующими способами: а) получение следствий из непосредственно заданной информации; б) переосмысливания некоторых объектов (фигур, отношений между ними) в плане других понятий (например, АР – высота треугольника АВС, значит, АР Основные этапы в решении задачи. Общие умения по решению задач - student2.ru ВС; задан правильный треугольник, значит, можно найти радиус вписанной и радиус описанной окружностей и т.п.); в) замена термина его определением; г) перечисление характеристических свойств понятий; д) интерпретация символических записей; е) перевод содержания задачи на язык специальной теории и наоборот (например, векторной).

Часто внимание учащихся на информации второго и третьего вида не обращается, поэтому дальше выполнения рисунка и записей «дано» и «требуется доказать» самостоятельное решение не двигается.

Нужно учить школьников получать информацию второго и третьего вида. Полезны упражнения вида: 1) в треугольнике АВС сумма двух углов 90º. Что вы скажете о треугольнике АВС?;2) АВСD – трапеция. Назовите несколько свойств этой фигуры; 3) Можно ли прямоугольник определить следующим образом: прямоугольником называется параллелограмм, имеющий прямую, содержащую середины его противоположных сторон, своей осью симметрии?

Очень важно на уроках выполнять анализ условия задачи всем классом.

Для того чтобы научиться решать задачи, надо приобрести опыт их решения. Редкие ученики самостоятельно приобретают такой опыт. Долг учителя - помочь учащимся приобрести опыт решения задач, научить их решать задачи. Однако помощь учителя не должна быть чрезмерной. Учитель должен помогать ученику путем советов, как решать задачу, или вопросов, отвечая на которые ученик успешнее решит задачу. Иногда учитель разыгрывает решение задачи, сам задавая вопросы и сам же отвечая на них. Ученики подражают ему в этом, постепенно приучаясь решать задачи. Но такой вариант обучения требует большей затраты времени и не всегда приводит к хорошим результатам. Можно сказать, что механическое подражание не метод обучения решению задач. Нужны вопросы и советы учителя ученику, вызывающие развивающие мыслительную деятельность школьников, помогающие развивать творческий подход к решению задач.

Такие вопросы и советы должны обладать общностью для различных задач, иначе ученики не научатся решать многие задачи, а будут учиться решать каждую конкретную задачу в отдельности. В то же время вопросы и советы должны быть естественны и просты, должны иметь своим источником простой здравый смысл. Они должны оказывать ученику действенную, но не назойливую помощь.

Вопросы и советы для осмысления условия задачи

Нельзя приступать к решению задачи, не уяснив четко, в чем заключается задание, т. е. не установив, каковы данные и искомые или посылки и заключения.

Первый совет учителя: не спешить начинать решать задачу. Этот совет не означает, что задачу надо решать как можно медленней. Он означает, что решению задачи должна предшествовать подготовка, заключающаяся в следующем: а) сначала следует ознакомиться с задачей, внимательно прочитав ее содержание. При этом схватывается общая ситуация, описанная в задаче; б) ознакомившись с задачей, необходимо вникнуть в ее содержание. При этом нужно следовать такому совету: выделить в задаче данные и искомые, а в задаче на доказательство - посылки и заключения; в) если задача геометрическая или связана с геометрическими фигурами, полезно сделать чертеж к задаче и обозначить на чертеже данные и искомые (это тоже совет, которому должен следовать ученик); г) в том случае, когда данные (или искомые) в задаче не обозначены, надо ввести подходящие обозначения. При решении текстовых задач алгебры вводят обозначения искомых или других переменных, принятых за искомые; д) уже на первой стадии решения задачи, стадии понимания задания, полезно попытаться ответить на вопрос: "Возможно ли удовлетворить условию?" Не всегда сразу удается ответить на этот вопрос, но иногда это можно сделать. Полезно выяснить, однозначно ли сформулирована задача, не содержит ли она избыточных или противоречивых данных. Одновременно выясняется, достаточно ли данных для решения задачи.

Обучение краткой записи условия задачи - это обуче­ние анализу условия. Краткая запись- это модель текста задачи, материализованная форма проведения действия анализа условия.

Построение модели задачи имеет несколько целей:

а) для фиксации результатов анализа задачи и тем самым для организации самого анализа, поэтому построение модели задачи в этом случае проводится в процессе анализа и по мере его выполнения;

б) для взгляда на задачу с разных точек зрения. Построение модели задача позволяет осуществить процесс переформулирования задачи;

в) построение модели задачи является подготовительным этапом для построения решающей математической модели задачи.

Модель задачи может быть самой различной: схематической, табличной, структурной, графической и т. д. выбор вида модели задачи зависит как от характера задачи, так и от особенностей решающего субъекта, от его умений и навыков, привычного для него способа анализа и построения модели задачи. При построении модели ученик опирается, с одной стороны, на данный ему текст задачи, а с другой – на приобретенные в результате жизненного опыта и школьного обучения знания о предметном содержании количественных соотношений, встречающихся в задачах, и на способы описания этих соотношений.

Например, рассмотрим две модели для задачи «Моторная лодка прошла расстояние между двумя пристанями А и В по течению реки за 6 часов, а обратный путь она свершила за 8 часов. За сколько времени пройдет расстояние между этими пристанями плот, пущенный по течению реки?»

Табличная модель имеет следующий вид:

Объекты Движение Путь Собственная скорость Скорость течения Фактическая скорость Время движения
Моторная лодка по течению S V U V+U 6 ч
против течения S V U V-U 8 ч
Плот по течению S - U U ?

Графическая модель этой задачи имеет такой вид:

Основные этапы в решении задачи. Общие умения по решению задач - student2.ru Основные этапы в решении задачи. Общие умения по решению задач - student2.ru Основные этапы в решении задачи. Общие умения по решению задач - student2.ru U+V 6 ч Основные этапы в решении задачи. Общие умения по решению задач - student2.ru 8 ч Основные этапы в решении задачи. Общие умения по решению задач - student2.ru V-U  
лодка     В
Основные этапы в решении задачи. Общие умения по решению задач - student2.ru U      
         
Основные этапы в решении задачи. Общие умения по решению задач - student2.ru плот        

А

Начинать поиск решения задачи можно лишь тогда, когда ее условие полностью понято. Самоконтролем на этом этапе являют­ся пересказ условия, подсчет данных и требования, проверка схем.

При осуществлении поиска основной идеи задачи продолжа­ется выявление скрытых отношений, структуры задачи: рассмат­риваются под удобным углом зрения данные и требования, проис­ходит сопоставление решаемой задачи с ранее решенными, кон­струируется модель задачи в соответствии с выдвигаемой гипо­тезой, осуществляется мысленный эксперимент, привлекаются различные эвристики.

При этом самоконтроль осуществляется при пересказе текста задачи своими словами для выяснения, не забыто ли какое-либо данное, каждое ли слово в тексте понято. Если условие задачи моделируется с помощью чертежа, таблицы, то необходимо про­верить, каждому ли данному нашлось место в этой модели. Для того чтобы проверить, правильно ли понято условие, можно ре­комендовать восстановить текст задачи по краткой записи, моде­ли, чертежу.

Составление плана решения задачи(2-й этап), пожалуй, является главным шагом на пути ее решения. Правильно составленный план решения задачи почти гарантирует правильное ее решение. Но составление плана может оказаться сложным и длительным процессом. Поэтому крайне необходимо предлагать ученику ненавязчивые вопросы, советы, помогающие ему лучше и быстрее составить план решения задачи, "открыть" идею ее решения:

1). Известна ли решающему какая-либо родственная задача? Аналогичная задача? Если такая или родственная задача известна, то составление плана решения задачи не будет затруднительным. Но далеко не всегда известна задача, родственная решаемой. В этом случае может помочь в составлении плана решения совет.

2). Подумайте, известна ли вам задача, к которой можно свести решаемую. Если такая задача известна решающему, то путь составления плана решения данной задачи очевиден: свести решаемую задачу к решенной ранее. Может оказаться, что родственная задача неизвестна решающему и он не может свести данную задачу к какой-либо известной. План же сразу составить не удается.

3). Стоит воспользоваться советом: "Попытайтесь сформулировать задачу иначе". Иными словами, попытайтесь перефразировать задачу, не меняя ее математического содержания.

При переформулировании задачи пользуются либо определениями данных в ней математических понятий (заменяют термины их определениями), либо их признаками (точнее сказать, достаточными условиями). Надо отметить, что способность учащегося переформулировать текст задачи является показателем понимания математического содержания задачи.

Некоторые авторы относят к переформулировке задачи и перевод ее на язык математики, то сть язык алгебры, геометрии или анализа. Это, скорее, формализация задачи, "математизация" ее. К такому приему и приходится часто прибегать при решении многих текстовых задач.

4). Составляя план решения задачи, всегда следует задавать себе (или решающему задачу ученику) вопрос: "Все ли данные задачи использованы?" Выявление неучтенных данных задачи облегчает составление плана ее решения.

5). При составлении плана решения задачи иногда бывает полезно следовать совету: "Попытайтесь преобразовать искомые или данные". Часто преобразование искомых или данных способствует более быстрому составлению плана решения. При этом искомые преобразуют так, чтобы они приблизились к данным, а данные - так, чтобы они приблизились к искомым. Так, при каждом случае тождественных преобразований данные преобразуются, постепенно приближаясь к результату (искомому). Аналогично уравнение, систему уравнений, неравенство или систему неравенств преобразуют в равносильные, чтобы найти множество решений.

6). Нередко случается так, что, следуя указанным выше советам, решающий задачу все же не может составить план ее решения. Тогда может помочь еще один совет: "Попробуйте решить лишь часть задачи", т. е. попробуйте сначала удовлетворить лишь части условий, с тем чтобы далее искать способ удовлетворить оставшимся условиям задачи.

7). Нередко в составлении плана решения задачи помогает ответ на вопрос: "Для какого частного случая возможно достаточно быстро решить эту задачу?" Обнаружив такой частный случай, решающий ставит перед собой новую цель - воспользоваться решением задачи в найденном частном случае для более общего (но, может быть, не самого общего) случая. Так можно поступить, постепенно обобщая задачу до исходной, решаемой задачи. Предполагаемый вариант рассуждений - явное применение полной индукции. Итак, совет: "Рассмотрите частные случаи задачной ситуации, решите задачу для какого-нибудь частного случая, примените индуктивные рассуждения".

При выдвижении гипотезы относительно возможного решения самоконтроль заключается в том, что решающему необходимо доказать себе, что выбор пути сделан правильно: что с помощью выбранной теоремы, правила, приема, определения можно довес­ти решение задачи до логического конца; что задача подходит под определенный тип, предписание для которого имеется; что выбранная эвристика позволяет наметить ход решения задачи. Если ситуацию нельзя подвести под известный прием, если ис­пользованная эвристика заводит в тупик, если использованная теория не позволяет довести решение задачи до конца, необходи­мо отказаться от намеченного плана и продолжить анализ усло­вия и привлечение новых идей.

План указывает лишь общий контур решения задачи. При реализации плана (3-й этап) решающий задачу рассматривает все детали, которые вписываются в этот контур. Эти детали надо рассматривать тщательно и терпеливо. Деятельность ре­шающего состоит в применении выделенных эвристик, приемов, правил, определений, и при этом самоконтроль проявляет себя как пошаговый, пооперационный самоконтроль. Пошаговому контролю ученик обучается в рамках формирования различных приемов учебной работы и умственных действий, при обучении использованию определений, правил, теорем.

При этом ученику (решающему задачу) полезно следовать некоторым советам:

1). Проверяйте каждый свой шаг, убеждайтесь, что он совершен правильно. Иными словами, нужно доказывать правильность каждого шага ссылками на соответствующие, известные ранее математические факты, предложения.

2). Обратить внимание учащихся на необходимость выбора такого способа оформления решения, чтобы зафиксировать решение в краткой и ясной форме.

Изучение найденного решения задачи(4-й этап) является необходимой и существенной частью решения задачи. Основным содержанием его должно быть осмысление выполненного решения, формулирование и решение (если это окажется возможным) других задач, явно связанных с решенной, и извлечение из всей проделанной работы выводов о том, как находятся и выполняются решения.

Таким образом, после оформления решения необходимо выявление идей (главной мысли), положенных в основу решения. Решение задачи несколькими способами является одним из путей проверки правильности полученного результата. Важно сопоставление найденных решений, выделение более рациональных и поучительных. Это путь воспитания гибкости математического мышления и находчивости.

На ранее перечисленных этапах решения задачи самоконтроль проявляет себя как естественная неотрывная составляющая поис­ковой деятельности, которая может и не осознаваться решающим.

Последнему этапу решения задачи - проверке и исследова­нию полученного решения присвоен особый статус этапа, на ко­тором осуществляется самоконтроль.

В методике преподавания математике выделены различные формы самоконтроля, проводимые после завершения этапа реа­лизации намеченного плана. Приведем примеры та­ких форм.

1.Проверка с помощью частного случая. Например, если при решении неравенства получен некоторый числовой промежуток, то можно проверить некоторые конкретные значения переменной из этого промежутка.

2. Проверка совпадения размерности ответа с требованием за­дачи. Например, при нахождении пути значение скорости (км/ч) умножается на значение времени (ч). Умножение наименований должно дать наименование длины (км).

3. Проверка симметричности ответа, если в условии задачи какие-то данные симметричны. Например, если уравнения, вхо­дящие в систему, симметричны относительно переменных, то и найденные значения различных переменных должны быть равны.

4. Проверка ответа по здравому смыслу. Например, скорость пешехода не может быть равной 15 км/ч, количество рабочих не может быть дробным и т. д.

5. Проверка с помощью грубой прикидки. При этом данные грубо округляются и выясняется порядок возможного результата.

6. Проверка с помощью обратной задачи или с помощью дру­гого способа решения.

7. Проверка текстовых задач, решенных с помощью составле­ния уравнения, по смыслу. При этом необходимо, чтобы все про­межуточные величины, зависящие от х, которые появляются в ходе решения задачи, имели бы смысл при полученном значении пере­менной.

Приведенные формы проверки, кроме 6, не дают полной га­рантии правильно найденного и выполненного решения, но, тем не менее, с ними полезно ознакомить учащихся.

Изложенные выше советы для решения задач позволяют решать многие задачи, но, разумеется, не могут служить рецептом для решения любой задачи. Эти советы, многие из которых сформулировал Д. Пойа, правильно ориентируют решающего задачи на поиск решения, сокращают время решения многих задач, повышают вероятность отыскания верного и рационального способа решения задач. Единого же рецепта для решения любых задач попросту не существует.

Наши рекомендации