Графическое отделение корней
Графическое отделение корнейосновано на графическом способе решения уравнений – отыскании точек, в которых функция f(x)пересекает ось 0Х.
Пример 1.2.2-1. Отделить корни уравнения ln (x-1)2 – 0.5 = 0.
На рис. 1.2.2-1 изображен график функции y = ln (x-1)2 – 0.5, из которого следует, что уравнение имеет два действительных корня [-1;0] и [2;3].
Рис.1.2.2-1
В некоторых случаях удобно вначале преобразовать функцию f(x) к виду f(x)=g1(x)- g2(x), из которого, при условии f(x)=0, следует, что g1(x)=g2(x). При построении графиков y1=g1(x)и y2=g2(x)находят отрезки, содержащие точки пересечения этих графиков.
Пример 1.2.2-2. Отделить корни уравнения сos(x) – x + 1 = 0.
Приведем исходное уравнение к виду сos(x)= x – 1. Построив графики функций y1 = сos(x) и y2 = х – 1 (рис. 1.2.2), выделим отрезок, содержащий корень [1;2].
Рис. 1.2.2-2
Аналитическое отделение корней
Аналитическое отделениекорней основано на следующей теореме.
Если функция f(x) непрерывна и монотонна на отрезке [a;b] и принимает на концах отрезка значения разных знаков, то на отрезке [a;b] содержится один корень уравнения f(x)=0.
Действительно, если условия теоремы выполнены, как это имеет место на отрезке [a;b] (рис. 1.2.2-3), то есть f(a)∙f(b)<0 и f'(x)>0 для xÎ [a;b], то график функции пересекает ось 0Х только один раз и, следовательно, на отрезке [a;b] имеется один корень уравнения f(x) = 0.
Аналогично можно доказать единственность корня на отрезке [c;d], на[d;e]и т.д
Рис. 1.2.2-3
Таким образом, для отделения корней нелинейного уравнения необходимо найти отрезки, в пределах которых функция монотонна и изменяет свой знак. Принимая во внимание, что непрерывная функция монотонна в интервалах между критическими точками, при аналитическом отделении корней уравнения можно рекомендовать следующий порядок действий:
1)установить область определения функции;
2)определить критические точки функции, решив уравнение f¢(x)=0;
3)составить таблицу знаков функции f(x) в критических точках и на границах области определения;
4)определить интервалы, на концах которых функция принимает значения разных знаков.
Пример 1.2.2-3. Отделить корни уравнения x - ln(x+2) = 0.
Область допустимых значений функции f(x) = x - ln(x+2) лежит в интервале (-2; ∞), найденных из условия x+2>0. Приравняв производную f¢(x)=1-1/(x+2) к нулю, найдем критическую точку хk= -1. Эти данные сведены в табл. 1.2.2-1 и табл. 1.2.2-2 знаков функции f(x).
Таблица 1.2.2-1 Таблица 1.2.2-.2
x | x→-2 | -1 | x→∞ | x | -1.9 | -1.1 | -0.9 | 2.0 | |
Sign(f(x)) | + | - | + | Sign(f(x)) | + | - | - | + |
Уравнение x - ln(x+2) = 0 имеет два корня (-2;-1]и [-1; ∞) . Проверка знака функции внутри каждого из полученных полуинтервалов (табл.1.2.2) позволяет отделить корни уравнения на достаточно узких отрезках [-1.9;-1.1]и [-0.9;2.0].
Уточнение корней
Задача уточнения корня уравнения с точностью , отделенного на отрезке [a;b], состоит в нахождении такого приближенного значения корня , для которого справедливо неравенство .Если уравнение имеет не один, а несколько корней, то этап уточнения проводится для каждого отделенного корня.