Введение: основной тезис
Математика. Утрата определенности.
«Математика. Утрата определенности.»: Мир; Москва; 1984
Аннотация
Книга известного американского математика, профессора Нью-Йоркского университета М. Клайна, в яркой и увлекательной форме рисующая широкую картину развития и становления математики от античных времен до наших дней. Рассказывает о сущности математической науки и ее месте в современном мире.
Рассчитана на достаточно широкий круг читателей с общенаучными интересами.
Моей жене Элен Ман-Клайн
Предисловие редактора перевода
Что такое математика? Каковы ее происхождение и история? В чем отличие математики от других наук? Чем занимаются математики сегодня и каков, по их мнению, ныне статус науки, которая составляет предмет их интересов и профессиональной деятельности? Все эти вопросы живо интересуют многих, но практически ни одно из имеющихся в нашей литературе научно-популярных сочинений не дает на них достаточно полного ответа. Вопрос «Что такое математика?» вынесен в заглавие пользующейся заслуженной известностью книги Р. Куранта и Г. Роббинса [118]. В этом сочинении Курант сделал попытку «конструктивного» определения математики: «Математикой называется все то, о чем говорится в нашей книге». Однако подобный ответ вряд ли можно признать удовлетворительным: он разъясняет суть дела лишь в той степени, в какой авторам названной книги удалось охарактеризовать главные направления математической науки; без сомнения, многих читателей книга Куранта — Роббинса может и разочаровать. Возможно, более всеобъемлющий ответ на поставленные нами вопросы дает другая книга, в значительной мере также созданная под руководством Р. Куранта, — сборник «Математика в современном мире» [137], в котором собраны посвященные математике статьи из известного американского научно-популярного журнала Scientific American [1]. Однако, уделяя большое внимание общим вопросам, эта книга остается всего лишь сборником статей различных авторов, отличающихся одна от другой по стилю, основным установкам и доступности для читателя.
Одним из авторов «Математики в современном мире» был Морис Клайн, который в годы составления этого сборника возглавлял математический факультет Нью-Йоркского университета и был руководителем одного из отделов Математического института им. Куранта. В настоящее время Клайн отказался от всех своих официальных должностей, сохранив лишь звание заслуженного профессора курантовского института; он входит также в состав редколлегий журналов Mathematics Magazine и Archive for History of Exact Sciences. Клайн является автором многих книг, из числа которых можно отметить часто цитируемые сочинения «Математика в западной культуре» [46]*[2]и, быть может, лучший из зарубежных курсов истории математики, «Математическое мышление от древности до настоящего времени» [45]*. Но в наши дни наибольшим успехом из всех сочинений[3]М. Клайна пользуется его книга «Математика. Утрата определенности», предлагаемая ныне советскому читателю; такой успех обусловлен как бесспорным литературным и педагогическим талантом автора, так и широтой и важностью затронутых в книге вопросов.
Настоящая книга М. Клайна именно и ставит своей целью ответить на вопросы, прозвучавшие в начале нашего предисловия. Автор пытается разъяснить сущность математики читателю, интересующемуся общенаучными проблемами, но не имеющему специального математического образования, и стремится ознакомить его с теми принципиальными проблемами, которые возникли в математике в конце XIX и в XX вв. В этом отношении книгу М. Клайна с полным основанием можно считать уникальной: столь широкий круг вопросов ранее в научно-популярной литературе по математике никогда не рассматривался. Изложение автора имеет «генетический» характер: он уделяет много внимания истории математики, особенно тщательно анализируя кризисные моменты, связанные с необходимостью ломки самой «математической идеологии». При этом автор достаточно подробно говорит о связи «чистой» и прикладной математики, о «непостижимой эффективности математики в естественных науках» (если использовать здесь название известной и цитируемой автором статьи Юджина Вигнера). Но самое значительное место в книге М. Клайна отводится вопросам, связанным с современным положением математики, и трудностям, обнаруженным в ее обосновании уже в нашем столетии, нередко в самые последние десятилетия.
Можно не сомневаться, что для многих читателей изложенные автором факты будут весьма неожиданными: мы привыкли считать, что математика всегда являлась образцом строгости, — автор же говорит о «нелогичном развитии» этой самой строгой и последовательной из наук и указывает, что античный идеал «доказательности» был достигнут здесь лишь во второй половине XIX в., а до этого общенаучный уровень арифметики и алгебры, геометрии и анализа был таким, что от него, безусловно, отшатнулись бы в ужасе древнегреческие мыслители. Неспециалисты привыкли считать, что в математике вообще не осталось никаких нерешенных проблем, но автор подчеркивает, что даже фундамент этой «самой научной из наук» не только не достроен, но, как будто никогда и не будет достроен до конца[4], так что непротиворечивость математики вызывает известные сомнения (ср. впрочем, с шутливым высказыванием Вейля, процитированным ниже). Главы «Нелогичное развитие» являются, быть может, самыми удачными в книге: читателю будет интересно узнать, с каким трудом входили в математику современное понятие числа или геометрические представления, с которыми мы знакомимся ныне буквально на школьной скамье.
Однако книга Клайна нуждается и в некоторых предостережениях. Рассчитывая на вдумчивого читателя и доверяя его критическому чутью, автор приводит много разных — иногда друг другу противоречащих — точек зрения и свободно сталкивает разные суждения, не настаивая на каком-либо определенном. Однако из того, что Клайн подробно рассказывает, скажем, о философии Канта, вовсе не следует, что сам он является кантианцем. Излагая далее религиозные установки ученых XVII-XVIII вв., Клайн также позже открещивается от них. Автор не претендует на то, чтобы читатель принял какую-либо из изложенных в книге философских концепций, как не требует он и безоговорочно признать правоту той или иной из обсуждаемых им школ, занимающихся основаниями математики: Клайн хочет о многом рассказать, но вовсе не во многом убедить. Это, конечно, не означает, что в книге абсолютно не выражена собственная позиция автора. Так, анализируя взаимоотношения математики с действительностью, Клайн явно стоит на стороне тех, кто видит в математике мощный аппарат познания реального мира, хотя не обходит вниманием и ученых, настаивавших на «объективном» существовании математических понятий как образов, которые складываются в нашем мозгу и позволяют нам судить о Вселенной, существующей для нас лишь в той форме, какую придает ей наш разум (с этой позицией еще в середине XVIII в. полемизировал Л. Эйлер). Впрочем, книга М. Клайна, требующая известного внимания и определенной научной культуры, явно не рассчитана на легковерного читателя — это позволяет нам не спорить со всеми теми из изложенных в книге взглядов, с которыми ни редактор, ни читатель никогда не согласятся.
Впрочем, несколько оговорок, относящихся к книге М. Клайна, возможно, будут здесь полезны. Прежде всего следует иметь в виду, что это отнюдь не учебник, а всего лишь сочинение научно-популярного характера: автор порой позволяет себе упрощать реальную ситуацию — поэтому читателям, которые захотят поглубже ознакомиться с затронутыми в книге вопросами, бесспорно, придется обратиться к дополнительной литературе, начиная с «Философской энциклопедии» (тт. 1-5. — М.: Советская энциклопедия, 1960-1970), содержащей не только достаточно подробные и снабженные дальнейшими литературными ссылками статьи, о всех упоминаемых в книге философах (скажем о Канте и кантианстве, о Юме и его школе), но и весьма отчетливые характеристики основных направлений в области оснований математики [логицизм, гильбертов формализм, интуиционизм и понимаемый Клайном, пожалуй, слишком расширительно конструктивизм (зачастую отождествляемый автором с интуиционизмом)] и даже обсуждение основных фактов и теорем из области оснований математики, упоминаемых в этой книге. Далее, надо учитывать полемическую заостренность этой интересной книги, стремление автора пробудить читателя к размышлениям, вызвать его на спор, для чего Клайн иногда намеренно несколько драматизирует события. Так, он уделяет много внимания дискуссиям об основаниях математики, развернувшимся в начале нашего столетия и не стихающим до сих пор: однако при этом, конечно, надо учитывать, что «истинность» и применимость основного костяка математической теории ни у кого не вызывает серьезных сомнений, так что заключающая гл. XII притча о пауках в старинном замке представляется здесь вполне уместной.
Слишком заострена также и гл. XIII «Математика в изоляции». Действительно, в наши дни, видимо, уже невозможны личности, подобные, скажем, Герману Гельмгольцу — великому врачу, физиологу, физику, механику и математику; тем не менее это еще не дает оснований к тому, чтобы говорить о полном отрыве математики от реальной жизни. Конечно, очень многие современные математики не интересуются приложениями своей науки, и немало из печатающихся ныне в математических журналах статей «канет в Лету», но это никак не относится к вождям математической науки нашего века, по которым стараются равняться все остальные ученые, как не касается и наиболее значительных работ, кстати сказать, нередка оцениваемых по заслугам лишь много позже. Автор специально отмечает глубокий интерес к естествознанию (в иных случаях — и к гуманитарным наукам) и конкретно к физике всех крупнейших математиков нашего столетия, внесших выдающийся вклад в эту область знания. Здесь можно назвать Анри Пуанкаре (небесная механика, специальная теория относительности) и Давида Гильберта (общая теория относительности); Германа Вейля (теория относительности, квантовая механика) и Джона фон Неймана (квантовая механика, создание ЭВМ, математические методы экономики, теория автоматов); Андрея Николаевича Колмогорова (теория турбулентности в механике, теория динамических систем, математические методы в биологии, математическое стиховедение) и Джорджа Дэвида Биркгофа (теория относительности, динамические системы, математические методы эстетики). Сходную картину мы наблюдаем и в наши дни, когда почти все лидеры математической науки разных поколений отнюдь не чураются решения практических проблем. Да и само различие между «чистой» и прикладной математикой точному учету не поддается: нередко творцы новых разделов математики даже не подозревают, сколь большое практическое применение могут найти в дальнейшем их «чиста математические» результаты. Так, теория функций комплексного переменного создавалась Коши, Риманом и Вейерштрассом, которые, конечно, не могли предположить, что много позже H.E. Жуковский укажет на важность этого математического аппарата для решения задач возникшей тогда новой области техники: гидро- и аэромеханики. Дж. Буль и другие логики XIX в. даже не подозревали, что разрабатывают аппарат, который в XX в. будет положен в основу функционирования ЭВМ, а знаменитый Н. Бурбаки в своих «Очерках по истории математики» [68] не так уже задолго до современного «октавного бума» в физике элементарных частиц довольно пренебрежительно отозвался об открытой А. Кэли неассоциативной алгебре гиперкомплексных чисел с восьмью комплексными единицами (алгебре октав; ср. со сказанным ниже).
Стремясь облегчить чтение книги М. Клайна лицам, не имеющим математического образования, или начинающим математикам, мы сочли необходимым дополнить авторский текст некоторыми пояснениями и уточнениями (они собраны в разделе «Примечания» в конце книги). Кроме того, к авторскому списку литературы, ориентированному исключительно на англоязычного читателя (где мы, однако, указали имеющиеся на русском языке переводы некоторых из перечисленных автором книг), был прибавлен список книг (главным образом на русском языке), объединенных в раздел «Дополнительная литература». Следует также заметить, что у М. Клайна использование названной им литературы целиком предоставлено инициативе читателя: в английском оригинале книги не содержится ни одной ссылки на эту литературу. Таким образом, все имеющиеся в настоящем (русском) издании ссылки на литературу принадлежат переводчику и редактору.
Заканчивая это (по необходимости несколько затянувшееся) предисловие, я хотел бы выразить надежду, что читатель получит удовольствие от предлагаемой ему книги — не во всех отношениях бесспорной, но безусловно яркой и очень интересной по содержанию.
И.М. Яглом
Вступление
Эта книга — о глубоких изменениях, которые претерпели взгляды человека на природу и роль математики. Ныне мы знаем, что математика не обладает теми качествами, которые некогда снискали ей всеобщее уважение и восхищение. Наши предшественники видели в математике непревзойденный образец строгих рассуждений, свод незыблемых «истин в себе» и истин о законах природы. Главная тема этой книги — рассказ о том, как человек пришел к осознанию ложности подобных представлений и к современному пониманию природы и роли математики. Краткий обзор избранной темы содержится уже во введении. Отдельные разрозненные факты можно было бы собрать воедино, если проследить историю математики во всех деталях. Но тем, кого интересует главным образом разительные перемены, происшедшие в наших взглядах на природу и роль математики, более доступен и понятен прямой подход, свободный от второстепенных частностей и тем самым позволяющий выделить общие идеи.
Возможно, многие математики предпочли бы вести откровенный разговор о современном статусе своей науки в узком кругу профессионалов. Публичное обсуждение возникающих трудностей они считают таким же проявлением дурного вкуса, как разглашение перед посторонними семейных тайн. Но мыслящие люди должны отчетливо сознавать сильные и слабые стороны тех средств, которыми они располагают. Ясное понимание ограниченности (равно как и возможностей) того или иного подхода приносит несравненно больше пользы, чем слепая вера, способная исказить наши представления или даже привести нас к краху.
Я хотел бы поблагодарить сотрудников издательства «Оксфорд юниверсити пресс» за внимательное отношение к этой книге и выразить особую признательность Уильяму Ч. Халпину и Шелдону Майеру за понимание важности популярного изложения затронутых мной проблем, а также Леоне Кейплесс и Кертиссу Черчу за ценные замечания и критику. Моей жене Элен я обязан многочисленными исправлениями, внесенными ею при чтении рукописи и корректуры.
Пользуясь случаем, я хотел бы поблагодарить Математическую ассоциацию США за разрешение использовать в книге материалы из статей издаваемого ею журнала The American Mathematical Monthly («Американский математический ежемесячник»).
М. Клайн
Бруклин, штат Нью-Йорк
Январь 1980 г.
Боги людям открыли не все. В поиск пустившись, люди сами познали немало.
* * *
Предположим, что мы не так уж далеки от истины.
* * *
Ни теперь, ни во веки знать никому не дано
Истину о богах и о том, что я вам толкую.
Если случится кому истину изречь,
То ведать о том он не в силах,
И над всем внешняя форма царит.
Ксенофан
Введение: основной тезис
Лучший метод для предвидения будущего развития математических наук заключается в изучении истории и нынешнего состояния этих наук.[5]
Анри Пуанкаре
Одни трагедии порождают войны, голод, чуму, другие — в мире идей — вызваны ограниченностью человеческого разума. Эта книга — горестный рассказ о бедствиях, выпавших на долю математики — наиболее древнего и не имеющего себе равных творения людей, плода их неустанных и многообразных усилий, направленных на использование способности человека мыслить.
Можно также сказать, что эта книга на общедоступном уровне повествует о расцвете и закате величия математики. Позволительно спросить: уместно ли говорить об упадке математики в наше время, когда ее границы необычайно расширились, когда научная деятельность в области математики ведется во все возрастающих масштабах и достигла небывалого расцвета, когда ежегодно публикуются тысячи работ по математике, все большее внимание привлекают вычислительные машины и когда поиск количественных соотношений захватывает все новые области, особенно в биологических и социальных науках? В чем причина трагедии? Прежде чем ответить на эти вопросы, следует напомнить, какие достижения математики снискали ей высочайший престиж, всеобщее признание и славу.
С самого зарождения математической науки как самостоятельной отрасли знания (у колыбели которой стояли древние греки) и на протяжении более чем двух тысячелетий математики занимались поиском истины и добились на этом пути выдающихся успехов. Необозримое множество теорем о числах и фигурах, казалось, служило неисчерпаемым источником абсолютного знания, которое никогда и никем не может быть поколеблено.
За пределами самой математики математические понятия и выводы явились фундаментом замечательных научных теорий. И хотя новые факты устанавливались в результате сотрудничества математики и естествознания, опирающегося на данные, имеющие нематематический, скажем физический, характер, они казались столь же непреложными, как и принципы самой математики, потому что предсказания, которые делались на основе математических теорий в астрономии, механике, оптике и гидродинамике, необычайно точно совпадали с данными наблюдений и экспериментов. Математика давала ключ к глубокому постижению явлений природы, к пониманию, заменявшему тайну и хаос законом и порядком. Человек получил возможность с гордостью взирать на окружающий мир и заявлять, что ему удалось раскрыть многие тайны природы, по существу оказавшиеся серией математических законов. Убеждением в том, что истины открывают математики, проникнуто известное высказывание Лагранжа: «Ньютон был счастливейшим из смертных, ибо существует только одна Вселенная и Ньютон открыл ее законы».
Для получения своих удивительных, мощных результатов математика использовала особый метод — метод дедуктивных выводов из небольшого числа самоочевидных принципов, называемых аксиомами; этот метод знаком каждому школьнику — прежде всего из курса геометрии. Природа дедуктивного вывода такова, что она гарантирует истинность заключения, если только истинны исходные аксиомы. Очевидная, безотказная и безупречная логика дедуктивного вывода позволила математикам извлечь из аксиом многочисленные неоспоримые и неопровержимые заключения. Эту особенность математики многие отмечают и поныне. Всякий раз, когда нужно привести пример надежных и точных умозаключений, ссылаются на математику.
Успехи, достигнутые математикой с помощью дедуктивного метода, привлекли к ней внимание величайших мыслителей. Математика наглядно продемонстрировала возможности и силу человеческого разума. Почему бы не воспользоваться, спросили мыслители, столь хорошо зарекомендовавшим себя дедуктивным методом для постижения истин там, где прежде безраздельно властвовали авторитет, традиция и привычка, — в философии, теологии, этике, эстетике и в социальных науках? Человеческий разум, столь эффективный в математике и в математической физике, мог бы стать арбитром помыслов и действий также и в других областях, приобщив их к красоте истины и истинности красоты. В эпоху, получившую название эпохи Просвещения (или Века разума), методология математики и даже некоторые математические понятия и теоремы были применены к другим областям человеческой деятельности.
Обращение к прошлому — плодотворный источник познания настоящего. Созданные в начале XIX в. необычные геометрии и столь же необычные алгебры вынудили математиков исподволь — и крайне неохотно — осознать, что и сама математика, и математические законы в других науках не есть абсолютные истины. Например, математики с досадой и огорчением обнаружили, что несколько различных геометрий одинаково хорошо согласуются с наблюдательными данными о структуре пространства. Но эти геометрии противоречили одна другой — следовательно, все они не могли быть одновременно истинными. Отсюда напрашивался вывод, что природа построена не на чисто математической основе, а если такая первооснова и существует, то созданная человеком математика не обязательно соответствует ей. Ключ к реальности был утерян. Осознание этой потери было первым из бедствий, обрушившихся на математику.
В связи с появлением уже упоминавшихся новых геометрий и алгебр математикам пришлось пережить шок и другого рода. Математики настолько уверовали в бесспорность своих результатов, что в погоне за иллюзорными истинами стали поступаться строгостью рассуждений. Но когда математика перестала быть сводом незыблемых истин, это поколебало уверенность математиков в безукоризненности их теорий. Тогда им пришлось взяться за пересмотр своих достижений, и тут они, к своему ужасу, обнаружили, что логика в математике совсем не так уж тверда, как думали их предшественники.
По существу развитие математики имело алогичный характер. Это алогичное развитие включало в себя не только неверные доказательства, но и пропуски в доказательствах и случайные ошибки, которых можно было бы избежать, если бы математики действовали более осмотрительно. Такие досадные изъяны отнюдь не были редки. Но алогичность развития математики заключалась также в неадекватном толковании понятий, в несоблюдении всех необходимых правил логики, в неполноте и недостаточной строгости доказательств. Иными словами, чисто логические соображения подменялись интуитивными аргументами, заимствованными из физики, апелляциями к наглядности и ссылками на чертежи.
Но и когда все это было установлено, математика по-прежнему оставалась эффективным средством описания природы. Кроме того, математика сохранила привлекательность и сама по себе как область чистого знания, и в умах многих, особенно пифагорейцев, являлась частью реальности, представляющей самостоятельный интерес.[6]Учитывая это, математики решили восполнить пробелы в логическом каркасе своей науки и перестроить заново те части ее, в которых обнаружились изъяны. Движение за математическую строгость приобрело широкий размах во второй половине XIX в.
К началу XX в. математики стали склоняться к мнению, что желанная цель наконец достигнута. И хотя им пришлось признать, что математика дает лишь приближенное описание природы и многие утратили веру в то, что природа полностью основана на математических принципах, математики по-прежнему продолжали возлагать большие надежды на проводимую ими реконструкцию логической структуры математики. Но не успели смолкнуть восторги по поводу якобы достигнутых успехов, как в реконструированной математике в свою очередь обнаружились противоречия. Обычно эти противоречия принято называть парадоксами — эвфемизм, позволяющий тем, кто его использует, обходить молчанием кардинальное обстоятельство: там, где есть противоречия, там нет логики.
Ведущие математики и философы начала XX в. сразу же попытались разрешить возникшие противоречия. В результате возникло четыре различных подхода к математике, которые были отчетливо сформулированы и получили значительное развитие; у каждого из этих подходов нашлось немало приверженцев. Все четыре направления математики стремились не только разрешить известные противоречия, но и гарантировать, что в будущем не появятся новые противоречия, т.е. старались доказать непротиворечивость математики. Интенсивная разработка оснований математики привела и к другим результатам. Приемлемость некоторых аксиом и принципов логики дедуктивного вывода также стала яблоком раздора: позиции школ по этим вопросам разошлись.
В конце 30-х годов XX в. математик мог бы принять один из нескольких вариантов оснований математики и заявить что проводимые им математические доказательства по крайней мере согласуются с догматами избранной им школы. Но тут последовал удар ужасающей силы: вышла в свет работа Курта Гёделя, в которой он среди прочих важных и значительных результатов доказал, что логические принципы, принятые различными школами в основаниях математики, не позволяют доказать ее непротиворечивость. Как показал Гёдель, непротиворечивость математики невозможно доказать, не затрагивая самих логических принципов, замкнутость которых весьма сомнительна. Теорема Гёделя вызвала смятение в рядах математиков. Последующее развитие событий привело к новым осложнениям. Оказалось, например, что даже аксиоматически-дедуктивный метод, столь высоко ценимый в прошлом как надежный путь к точному знанию, небезупречен. В результате этих открытий число различных подходов к математике приумножилось и математики разбились на еще большее число группировок.
В настоящий момент положение дел в математике можно обрисовать примерно так. Существует не одна, а много математик, и каждая из них по ряду причин не удовлетворяет математиков, принадлежащих к другим школам. Стало ясно, что представление о своде общепринятых, незыблемых истин — величественной математике начала XIX в., гордости человека — не более чем заблуждение. На смену уверенности и благодушию, царившим в прошлом, пришли неуверенность и сомнения в будущем математики. Разногласия по поводу оснований самой «незыблемой» из наук вызвали удивление и разочарование (чтобы не сказать больше). Нынешнее состояние математики — не более чем жалкая пародия на математику прошлого с ее глубоко укоренившейся и широко известной репутацией безупречного идеала истинности и логического совершенства.
Как думают некоторые математики, расхождения во мнениях относительно того, что следует считать настоящей математикой, когда-нибудь будут преодолены. Особое место среди тех, кто так считает, занимает группа ведущих французских математиков, пишущих под коллективным псевдонимом Никола Бурбаки:
С древнейших времен критические пересмотры оснований всей математики в целом или любого из ее разделов почти неизменно сменялись периодами неуверенности, когда возникали противоречия, которые приходилось решать… Но вот уже двадцать пять веков математики имеют обыкновение исправлять свои ошибки и видеть в этом обогащение, а не обеднение науки; это дает им право смотреть в будущее спокойно.
([2], с. 30.)
Но гораздо больше математиков настроены пессимистично. Один из величайших математиков XX в. Герман Вейль сказал в 1944 г.:
Вопрос об основаниях математики и о том, что представляет собой в конечном счете математика, остается открытым. Мы не знаем какого-то направления, которое позволит в конце концов найти окончательный ответ на этот вопрос, и можно ли вообще ожидать, что подобный «окончательный» ответ будет когда-нибудь получен и признан всеми математиками. «Математизирование» может остаться одним из проявлений творческой деятельности человека, подобно музицированию или литературному творчеству, ярким и самобытным, но прогнозирование его исторических судеб не поддается рационализации и не может быть объективным.
Говоря словами Гете, «история науки — это сама наука».
Разногласия по поводу того, что такое настоящая математика, и существование многочисленных вариантов оснований математики не только серьезно сказались на самой математике, но и оказали самое непосредственное влияние на физику. Как мы увидим, далее, наиболее развитые физические теории ныне полностью «математизированы». (Разумеется, выводы таких теорий интерпретируются посредством так или иначе наблюдаемых «чувственных», подлинно физических объектов: сидя у радиоприемников, мы слышим реальные голоса, чему не мешает отсутствие представления о том, что такое радиоволны.) Поэтому ученых — даже тех, кто не работает непосредственно над решением фундаментальных проблем, — не может не занимать вопрос о судьбах математики, которую они могут применять с уверенностью, не рискуя затратить годы на изыскания, некорректные в силу сомнительности использования математического аппарата.
Утрата критериев абсолютности истины, все возрастающая сложность математики и естественных наук, неуверенность в выборе правильного подхода к математике привели к тому, что большинство математиков оставили вопросы оснований. С проклятием «Чума на оба ваши дома!» они обратились к тем областям математики, где методы доказательства казались им надежными. Они нашли также, что проблемы, придуманные человеком, более привлекательны и легче поддаются решению, чем проблемы, поставленные природой.
Кризис математики и порожденные им конфликты по поводу того, что такое настоящая математика, отрицательно сказались и на применении математической методологии ко многим областям культуры: к философии, социальным и политическим наукам, этике и эстетике. Надежда на то, что удастся найти объективные, непреходящие законы и эталонные образцы знания, развеялась. «Век разума» закончился.
Несмотря на неудовлетворительное состояние математики, многочисленные существенно различные подходы, разногласия по поводу приемлемости аксиом и опасности возникновения новых противоречий, могущих подорвать значительную часть математической науки, многие математики продолжают применять математику для описания физических явлений и даже расширяют сферу ее применимости на экономику, биологию и социологию. Безотказная эффективность математики подсказывает две темы для обсуждения. Во-первых, такая эффективность может рассматриваться как критерий правильности. Разумеется, подобный критерий имеет временный характерно, что сегодня считается правильным, в дальнейшем может оказаться неверным.
Вторая тема ставит нас перед загадкой: почему математика вообще эффективна, если вопрос о том, что такое настоящая математика, вызывает столько споров ([96]*; [4])? Не творим ли мы чудеса, пользуясь при этом несовершенными средствами? Пусть человек заблуждается, но разве может и природа также заблуждаться до такой степени, чтобы поддаться математическому диктату человека? Безусловно, нет. А как быть с успешными полетами на Луну, исследованиями Марса и Юпитера, ставшими возможными благодаря технике, существенно зависящей от математики: разве они не подтверждают математические теории космоса? Как же можно в таком случае говорить об искусственности и неединственности математики? Может ли тело продолжать жить, если разум и дух помутились? Может! И это относится и к человеку, и к математике. Итак, нам надлежит выяснить, почему, несмотря на шаткие основания и взаимоисключающие теории, математика оказалась столь непостижимо эффективной.
I