Неполные уравнения прямой
Лекция 7.
Линии на плоскости и их уравнения. Прямая на плоскости. Различные формы уравнений прямой на плоскости. Угол между прямыми. Расстояние от точки до прямой.
Пусть на плоскости задана декартова система координат и некоторая линия L.
Определение 7.1. Уравнение
Ф(х,у) = 0 (7.1)
называется уравнением линии L, если этому уравнению удовлетворяют координаты х и у любой точки, лежащей на линии L, и не удовлетворяют координаты ни одной точки, не лежащей на линии L.
Пример.
(х – а)² + (y – b)² = R² - уравнение окружности радиуса R с центром в точке (a,b).
Замечание. Часто удобно использовать параметрическиеуравнения линии:
, (7.2)
где функции и непрерывны по параметру t.
Прямая на плоскости.
Рассмотрим различные виды уравнений прямой на плоскости.
Пусть прямая проходит через точку М0 (x0,y0) перпендикулярно вектору n = {A,B}. Тогда вектор , где М(х,у) – произвольная точка прямой, ортогонален n. Поэтому координаты любой точки данной прямой удовлетворяют уравнению
А(х – х0) + В(у – у0) = 0 - (7.3)
уравнение прямой, проходящей через данную точку перпендикулярно данному вектору.
Замечание. Вектор n называется нормалью к прямой.
Преобразуем уравнение (7.3) к виду:
Ах + Ву + (-Ах0 – Ву0) = 0.
Обозначив -Ах0 – Ву0 = С, получим общее уравнение прямой:
Ах + Ву + С = 0. (7.4)
Получим теперь уравнение прямой, проходящей через точку М0 (x0,y0) параллельно вектору q = {l,m}. Так как вектор , где М(х,у) – произвольная точка прямой, коллинеарен q, координаты любой точки данной прямой удовлетворяют уравнению
, (7.5)
называемому каноническим уравнением прямой. Вектор q при этом называется направляющим вектором прямой. В частности, если прямая проходит через точки М1(х1,у1) и М2(х2,у2), ее направляющим вектором можно считать , и из уравнения (7.5) следует:
- (7.6)
уравнение прямой, проходящей через две заданные точки.
Пример.
Составим уравнение прямой, проходящей через точки М(1,2) и N(5,-3). Уравнение (7.6) примет вид:
- общее уравнение данной прямой.
Обозначив за t значения равных дробей, стоящих в левой и правой частях уравнения (7.5),
можно преобразовать это уравнение к виду:
x = x0 + lt, y = y0 + mt - (7.7)
параметрические уравнения прямой.
Для прямой l, не параллельной оси Оу, можно ввести так называемый угловой коэффициент k – тангенс угла, образованного прямой и осью Ох, и записать уравнение
у l прямой в виде:
у = kx + b - (7.8)
b l1 уравнение прямой с угловым коэффициентом.
α α Действительно, все точки прямой l1, параллельной l и проходящей
х через начало координат, удовлетворяют уравнению у = kх, а
ординаты соответствующих точек на прямой l отличаются от них
на постоянную величину b.
Неполные уравнения прямой.
Уравнение (7.4) называется полным, если коэффициенты А,В и С не равны нулю, и неполным, если хотя бы одно из этих чисел равно нулю. Рассмотрим возможные виды неполных уравнений прямой.
1) С = 0 - прямая Ах + Ву = 0 проходит через начало координат.
2) В = 0 - прямая Ах + С = 0 параллельна оси Оу (так как нормаль к прямой {A,0} перпендикулярна оси Оу).
3) А = 0 - прямая Ву + С = 0 параллельна оси Ох.
4) В=С=0 – уравнение Ах = 0 определяет ось Оу.
5) А=С=0 – уравнение Ву = 0 определяет ось Ох.
Таким образом, прямая, задаваемая полным уравнением, не проходит через начало координат и не параллельна координатным осям. Преобразуем полное уравнение прямой следующим образом:
Ах + Ву + С = 0 |:(-C), (7.9)
где и равны величинам отрезков, отсекаемых прямой на осях Ох и Оу. Поэтому уравнение (7.9) называют уравнением прямой в отрезках.