Угол между плоскостями
Пусть плоскости и заданы соответственно уравнениями и . Требуется найти угол между этими плоскостями.
Плоскости, пересекаясь, образуют четыре двугранных угла (рис. 11.6): два тупых и два острых или четыре прямых, причем оба тупых угла равны между собой, и оба острых тоже равны между собой. Мы всегда будем искать острый угол. Для определения его величины возьмем точку на линии пересечения плоскостей и в этой точке в каждой из плоскостей проведем перпендикуляры и к линии пересечения. Нарисуем также нормальные векторы и плоскостей и с началами в точке (рис. 11.6).
Рис.11.6.Угол между плоскостями
Если через точку провести плоскость , перпендикулярную линии пересечения плоскостей и , то прямые и и изображения векторов и будут лежать в этой плоскости. Сделаем чертеж в плоскости (возможны два варианта: рис. 11.7 и 11.8).
Рис.11.7.Угол между нормальными векторами острый
Рис.11.8.Угол между нормальными векторами тупой
В одном варианте (рис. 11.7) и , следовательно, угол между нормальными векторами равен углу , являющемуся линейным углом острого двугранного угла между плоскостями и .
Во втором варианте (рис. 11.8) , а угол между нормальными векторами равен . Так как
то в обоих случаях .
По определению скалярного произведения . Откуда
и соответственно
(11.4) |
Так как координаты нормальных векторов известны, если заданы уравнения плоскостей, то полученная формула (11.4) позволяет найти косинус острого угла между плоскостями.
Если плоскости перпендикулярны, то перпендикулярны и их нормальные векторы. Получаем условие перпендикулярности плоскостей:
(11.5) |
Если плоскости параллельны, то коллинеарны их нормальные векторы. Получаем условие параллельности плоскостей
(11.6) |
где -- любое число.
Условие параллельности двух плоскостей.
Две плоскости α1 и α2 параллельны тогда и только тогда, когда их нормальные векторы и параллельны, а значит .
Итак, две плоскости параллельны друг другу тогда и только тогда, когда коэффициенты при соответствующих координатах пропорциональны:
или
Условие перпендикулярности плоскостей.
Ясно, что две плоскости перпендикулярны тогда и только тогда, когда их нормальные векторы перпендикулярны, а следовательно, или .
Таким образом, .
28.
Параметрическое уравнение прямой в пространстве
Параметрические уравнения прямой могут быть записаны следующим образом
x = l t +x0 | |
y = m t + y0 | |
z = n t + z0 |
где (x0, y0, z0) - координаты точки лежащей на прямой,
{l; m; n} - координаты направляющего вектора прямой.