Задание №2. Найти производную и дифференциал:

Найти производную и дифференциал:

Задание №2. Найти производную и дифференциал: - student2.ru .

Решение: для нахождения производной данной функции используем два правила дифференцирования: 1) Задание №2. Найти производную и дифференциал: - student2.ru ;

2) Задание №2. Найти производную и дифференциал: - student2.ru

Задание №2. Найти производную и дифференциал: - student2.ru [справедливы следующие формулы: Задание №2. Найти производную и дифференциал: - student2.ru ] Задание №2. Найти производную и дифференциал: - student2.ru

Задание №2. Найти производную и дифференциал: - student2.ru .

Дифференциал функции ищем по формуле:

Задание №2. Найти производную и дифференциал: - student2.ru .

Задание №2. Найти производную и дифференциал: - student2.ru .

Ответ: Задание №2. Найти производную и дифференциал: - student2.ru ; Задание №2. Найти производную и дифференциал: - student2.ru

Задание №3.

Найти Задание №2. Найти производную и дифференциал: - student2.ru -?

Задание №2. Найти производную и дифференциал: - student2.ru

Решение: найдем Задание №2. Найти производную и дифференциал: - student2.ru от данной функции. Воспользуемся формулой:

Задание №2. Найти производную и дифференциал: - student2.ru .

Задание №2. Найти производную и дифференциал: - student2.ru .

Найдем Задание №2. Найти производную и дифференциал: - student2.ru

Задание №2. Найти производную и дифференциал: - student2.ru .

Теперь найдем Задание №2. Найти производную и дифференциал: - student2.ru .

Задание №2. Найти производную и дифференциал: - student2.ru .

Ответ: Задание №2. Найти производную и дифференциал: - student2.ru .

Задание №4.

Доказать, что Задание №2. Найти производную и дифференциал: - student2.ru .

Для доказательства найдем производную в левой части равенства. Воспользуемся следующим правилом дифференцирования: Задание №2. Найти производную и дифференциал: - student2.ru , т.е. Задание №2. Найти производную и дифференциал: - student2.ru

Задание №2. Найти производную и дифференциал: - student2.ru Задание №2. Найти производную и дифференциал: - student2.ru

Задание №2. Найти производную и дифференциал: - student2.ru Задание №2. Найти производную и дифференциал: - student2.ru .

Получим, что левая часть равна правой.

Что и следовало доказать.

Задание №5.

Точка совершает прямолинейное колебательное движение по закону Задание №2. Найти производную и дифференциал: - student2.ru , Задание №2. Найти производную и дифференциал: - student2.ru . Определить скорость и ускорение движения в момент времени Задание №2. Найти производную и дифференциал: - student2.ru .

Решение:

Задание №2. Найти производную и дифференциал: - student2.ru ; Задание №2. Найти производную и дифференциал: - student2.ru

Задание №2. Найти производную и дифференциал: - student2.ru

Задание №2. Найти производную и дифференциал: - student2.ru

Ответ: Задание №2. Найти производную и дифференциал: - student2.ru ; Задание №2. Найти производную и дифференциал: - student2.ru .

Наши рекомендации