Понятие электростатического поля
ЭЛЕКТРИЧЕСТВО
Лекция № 16
НАПРЯЖЕННОСТЬ ЭЛЕКТРИЧЕСКОГО ПОЛЯ В ВАКУУМЕ
План
1. Понятие электростатического поля. Закон Кулона. Напряженность электрического поля. Концепция близко- и дальнодействия. Принцип суперпозиции электрических полей. Силовые линии электростатического поля.
2. Поток напряженности. Теорема Гаусса для электростатического поля в вакууме.
3. Применение теоремы Гаусса в интегральной форме для расчета полей.
4. Теорема Гаусса в дифференциальной форме.
Понятие электростатического поля.
Все тела в природе способны электризоваться, т.е. приобретать заряд. Наличие электрического заряда проявляется в том, что заряженные тела взаимодействуют друг с другом. Существует два типа электрических зарядов, условно названных отрицательными и положительными. Носителями отрицательного заряда являются в основном электроны; ядра атомов заряжены положительно. Полагают, что существование этих двух типов заряда является проявлением симметрии природы (как, например, левое и правое). Другим фундаментальным свойством заряда является его дискретность, его кратность, хоть и малой, но вполне определенной величине. В электрически изолированной системе общий заряд системы не изменяется (закон сохранения заряда). Поле, создаваемое электрическими зарядами и обнаруживающее себя воздействием на другие заряды называется электрическим полем. Если заряды неподвижны и поле не изменяется, то поле называется электростатическим.
Взаимодействие зарядов описывается законом Кулона. Если расстояние между заряженными телами много больше размеров тел, заряды можно считать точечными.
Закон Кулона. Сила взаимодействия точечных неподвижных зарядов в вакууме прямо пропорциональна величине зарядов и обратно пропорциональна квадрату расстояния между ними. Для одноименных зарядов (рис. 16.1)
где - коэффициент пропорциональности, - электрическая постоянная ( Ф/м); | |
Рис. 16.1 |
, - величины электрических зарядов; – расстояние между зарядами; – единичный вектор; – сила, действующая на заряд со стороны заряда . Знак «-» обусловлен тем, что сила направлена противоположно вектору .
Пример использования закона Кулона.
Задача. Найти силу взаимодействия заряженного стержня с зарядом и длиной с точечным зарядом , находящимся на расстоянии от края стержня на одной прямой с ним. Дано: . Найти: | |
Рис. 16.2 |
Решение. Разобьем стержень (рис. 16.2) на дифференциально малые элементы длиной с зарядом , которые мы можем считать точечными. Сила взаимодействия заряда с по закону Кулона . Представим как заряд, приходящийся на единицу длины , умноженный на длину элемента , т.е. , тогда . Интегрируя по длине стержня, получим .
Заметим, что при , т.е. стержень уже можно считать точечным зарядом.
Напряженность электрического поля – это его силовая характеристика, векторная величина, определяемая отношением силы, действующей на заряд в данной точке поля, к величине заряда.
Размерность .
Концепция дальнодействия заключается в том, что при изменении положения одного заряда относительно другого заряда сила взаимодействия изменяется мгновенно.
Концепция близкодействия. При изменении положения одного заряда относительно другого сила взаимодействия изменяется с конечной скоростью (в вакууме – со скоростью света). Взаимодействие осуществляется при помощи посредника – электрического поля, создаваемого зарядами. Это концепция современной физики. Она пришла на смену концепции дальнодействия.
Принцип суперпозиции электрических полей. Как следует из опыта, сила, действующая на некоторый заряд со стороны системы зарядов, равна векторной сумме сил, с которыми каждый из зарядов системы действует на данный заряд . Поделив последнее выражение на величину заряда, получим: .
Из определения напряженности следует
Принцип суперпозиции электрических полей: напряженность поля, создаваемого системой зарядов в некоторой точке, равна векторной сумме напряженностей, создаваемых в отдельности каждым зарядом системы в данной точке.
Напряженность электрического поля, создаваемого точечным неподвижным зарядом в некоторой точке на расстоянии от него, можно получить с помощью закона Кулона:
Силовые линии. Для наглядности электрические поля изображают с помощью силовых линий, т.е. воображаемых линий, в каждой точке которых напряженность направлена по касательной. На рисунке 16.3 изображены картины силовых линий для некоторых случаев:
а) | б) | в) | г) |
Рис. 16.3 |
а) и б) – одиночные заряды разных знаков,
в) система двух разноименных зарядов,
г) система двух одноименных зарядов.
2. Поток напряженности электрического поля. Потоком напряженности электрического поля через некоторую площадку (рис.16.4) называется скалярное произведение вектора на вектор
Вектор по модулю равен ( ), направлен по нормали к площадке и называется вектором элементарной площадки ( ). По правилу скалярного произведения . Полный поток через произвольную поверхность конечных размеров находится интегрированием по поверхности: | |
Рис. 16.4 |
Теорема Гаусса (Карл Гаусс – великий немецкий математик, 1777 – 1855 гг.). Постановка задачи: имеется система точечных зарядов, которые заключены в замкнутую поверхность произвольной формы . Требуется найти поток напряженности через эту поверхность.
Сначала рассмотрим случай, когда внутри поверхности находится один заряд (рис.16.5). Найдем элементарный поток . Напряженность поля точечного заряда в некоторой точке на поверхности . Из рисунка видно, что , где - элементарная площадка, расположенная перпендикулярно радиус-вектору, проведенному из точки расположения заряда в точку . | |
Рис. 16.5 |
Тогда элементарный поток напряженности .
Отношение - элементарный телесный (пространственный) угол.
Найдем полный поток напряженности через поверхность , когда внутри нее один точечный заряд: . Обобщим этот результат на случай произвольного числа зарядов внутри поверхности (рис.16.6).
Воспользуемся принципом суперпозиции , тогда, используя то, что интеграл суммы равен сумме интегралов, получим
. Таким образом, | |
Рис. 16.6 |
Теорема Гаусса.Поток вектора напряженности электрического поля через замкнутую поверхность равен алгебраической сумме зарядов, охватываемых этой поверхностью, деленной на электрическую постоянную.
«Алгебраическая сумма» означает, что каждый заряд берется со своим знаком («+» или «-»).