Кинематическое исследование многозвенного плоского механизма.

Исходные данные: Кинематическое исследование многозвенного плоского механизма. - student2.ru , а = 49 см, b = 19 см, с = 57 мм, О1А = 15 см,

АВ = 40 см, О2В = 35 см, О2С = 30 см, ВС = 20 см, СD = 60 см, О3D = 50 см, СЕ = 30 см, ЕF=30 см. Кривошип О1А вращается с постоянной угловой скоростью ωО1=3с-1.

Для данного положения механизма определить скорости всех точек механизма, угловые скорости звеньев методами полюса и мгновенного центра скоростей (МЦС), а также ускорения точек А, В, М (точка М делит звено АВ пополам) методами полюса и мгновенного центра ускорений (МЦУ) и угловое ускорение звена АВ.

Решение.

1. Изобразим механизм в заданном положении, согласно геометрическим размерам приведенным в исходных данных, тогда схема механизма изобразится в соответствующем масштабе (рис.30).

Кинематическое исследование многозвенного плоского механизма. - student2.ru

Рис.30.

2. Определим скорости точек механизма, и угловые скорости звеньев методом полюса с помощью построения плана скоростей.

2.1. Определим скорость точки А.

Точка А принадлежит звену АО1, которое совершает вращательное движение относительно неподвижной точки О1, тогда скорость точки будет равна

Кинематическое исследование многозвенного плоского механизма. - student2.ru см/с.

Вектор скорости точки А ( Кинематическое исследование многозвенного плоского механизма. - student2.ru ) будет направлен перпендикулярно радиусу вращения АО1 в сторону вращения угловой скорости ωО1 (рис.31).

Примем вектор Ра, который будет изображать вектор скорости точки А ( Кинематическое исследование многозвенного плоского механизма. - student2.ru ) на плане скоростей, равным 120 мм (Ра = 120 мм).

Тогда масштаб плана скоростей составит

Кинематическое исследование многозвенного плоского механизма. - student2.ru см/(с∙мм).

Кинематическое исследование многозвенного плоского механизма. - student2.ru

Рис.31.

Кинематическое исследование многозвенного плоского механизма. - student2.ru

Рис.32. План скоростей, масштаб Кинематическое исследование многозвенного плоского механизма. - student2.ru см/(с∙мм).

Изобразим вектор Ра, изображающего вектор скорости точки А ( Кинематическое исследование многозвенного плоского механизма. - student2.ru ), на плане скоростей равным 120 мм, путем параллельного переноса в точку Р вектора Кинематическое исследование многозвенного плоского механизма. - student2.ru (рис.32).

2.2. Определим скорость точки В.

Для нахождения скорости точки В требуется рассмотреть движение этой точки относительно двух полюсов, скорости которых известны.

Рассмотрим движение точки В относительно полюса точки А (так как скорость точки А определена). Составим векторное уравнение

Кинематическое исследование многозвенного плоского механизма. - student2.ru .

Согласно данному уравнению вектор скорости точки В ( Кинематическое исследование многозвенного плоского механизма. - student2.ru )изобразится вектором Pb на плане скоростей; вектор скорости точки А ( Кинематическое исследование многозвенного плоского механизма. - student2.ru ) изображается вектором Pа на плане скоростей; вектор скорости Кинематическое исследование многозвенного плоского механизма. - student2.ru изобразится вектором аb на плане скоростей.

Под действием вектора скорости Кинематическое исследование многозвенного плоского механизма. - student2.ru , приложенного в точке В, звено АВ будет приходить во вращение относительно уже неподвижного полюса точки А, с угловой скоростью Кинематическое исследование многозвенного плоского механизма. - student2.ru . Так как вектор скорости Кинематическое исследование многозвенного плоского механизма. - student2.ru направлен перпендикулярно звену АВ ( Кинематическое исследование многозвенного плоского механизма. - student2.ru ÖАВ), то данную линию проводим из точки а на плане скоростей (см. рис.32).

Составим второе векторное уравнение за полюс возьмем точку О2, так как относительно этой точки звено ВСО2 вращается (рис.31), то точка О2 является неподвижной, поскольку закреплена в шарнирно неподвижной опоре, скорость точки О2 ( Кинематическое исследование многозвенного плоского механизма. - student2.ru ) равна нулю.

Кинематическое исследование многозвенного плоского механизма. - student2.ru .

Так как Кинематическое исследование многозвенного плоского механизма. - student2.ru , следовательно, вектор, изображающий на плане скоростей Кинематическое исследование многозвенного плоского механизма. - student2.ru , будет находиться в точке Р (РР=0).

Под действием вектора скорости Кинематическое исследование многозвенного плоского механизма. - student2.ru , приложенного в точке В, звено ВСО2 будет приходить во вращение относительно неподвижного полюса точки О2, с угловой скоростью Кинематическое исследование многозвенного плоского механизма. - student2.ru . Так как вектор скорости Кинематическое исследование многозвенного плоского механизма. - student2.ru направлен перпендикулярно звену ВО2 ( Кинематическое исследование многозвенного плоского механизма. - student2.ru ÖВО2), то данную линию проводим из точки Р на плане скоростей (рис.32).

В пересечении двух линий (ÖВО2) и (ÖАВ) на плане скоростей определяем точку b.

Для нахождения скорости точки В по модулю ( Кинематическое исследование многозвенного плоского механизма. - student2.ru ) необходимо замерить отрезок Pb на плане скоростей и умножить на масштаб плана скоростей Кинематическое исследование многозвенного плоского механизма. - student2.ru (Pb составит 33,3 мм)

Кинематическое исследование многозвенного плоского механизма. - student2.ru см/с.

Для изображения вектора скорости точки В ( Кинематическое исследование многозвенного плоского механизма. - student2.ru ) на схеме механизма требуется вектор Pb с плана скоростей (см. рис.32) параллельно перенести в точку В механизма (см. рис.31).

2.3. Определим угловую скорость звена АВ ( Кинематическое исследование многозвенного плоского механизма. - student2.ru ).

Звено АВ приобретает угловую скорость Кинематическое исследование многозвенного плоского механизма. - student2.ru , относительно неподвижной точки А под действием скорости точки В, относительно точки А ( Кинематическое исследование многозвенного плоского механизма. - student2.ru ). Для определения модуля скорости Кинематическое исследование многозвенного плоского механизма. - student2.ru необходимо на плане скоростей (см. рис.32) измерить отрезок ab и умножить на масштаб плана скоростей Кинематическое исследование многозвенного плоского механизма. - student2.ru (аb составит 126,9 мм).

Кинематическое исследование многозвенного плоского механизма. - student2.ru см/с.

Для изображения вектора скорости Кинематическое исследование многозвенного плоского механизма. - student2.ru из точки В на схеме механизма требуется вектор аb с плана скоростей (см. рис.32) параллельно перенести в точку В механизма (см. рис.31).

Тогда угловая скорость Кинематическое исследование многозвенного плоского механизма. - student2.ru звена АВ относительно центра вращения точки А, под действием вектора скорости Кинематическое исследование многозвенного плоского механизма. - student2.ru направлена по часовой стрелке на схеме механизма (рис.31). Определим численное значение угловой скорости Кинематическое исследование многозвенного плоского механизма. - student2.ru

Кинематическое исследование многозвенного плоского механизма. - student2.ru с-1.

2.4. Определим угловую скорость звена ВСО2 ( Кинематическое исследование многозвенного плоского механизма. - student2.ru ).

Звено ВСО2 приобретает угловую скорость Кинематическое исследование многозвенного плоского механизма. - student2.ru относительно неподвижной точки О2, под действием скорости точки В, относительно точки О2 ( Кинематическое исследование многозвенного плоского механизма. - student2.ru ). Вектор скорости Кинематическое исследование многозвенного плоского механизма. - student2.ru равен вектору Кинематическое исследование многозвенного плоского механизма. - student2.ru , см. п.2.2.

Тогда угловая скорость Кинематическое исследование многозвенного плоского механизма. - student2.ru звена ВСО2 относительно центра вращения точки О2 под действием вектора скорости Кинематическое исследование многозвенного плоского механизма. - student2.ru направлена против часовой стрелки на схеме механизма (см. рис.31). Определим численное значение угловой скорости Кинематическое исследование многозвенного плоского механизма. - student2.ru

Кинематическое исследование многозвенного плоского механизма. - student2.ru с-1.

2.5. Определим скорость точки С.

Для нахождения скорости точки С, рассмотрим движение этой точки относительно двух полюсов (точки В, О2), скорости которых известны.

Рассмотрим движение точки С относительно полюса точки В. Составим векторное уравнение

Кинематическое исследование многозвенного плоского механизма. - student2.ru .

Согласно данному уравнению вектор скорости точки С ( Кинематическое исследование многозвенного плоского механизма. - student2.ru )изобразится вектором Pс на плане скоростей; вектор скорости точки В ( Кинематическое исследование многозвенного плоского механизма. - student2.ru ) изобразится вектором Pb на плане скоростей; вектор скорости Кинематическое исследование многозвенного плоского механизма. - student2.ru изобразится вектором bс на плане скоростей.

Под действием вектора скорости Кинематическое исследование многозвенного плоского механизма. - student2.ru , приложенного в точке С, звено ВС будет приходить во вращение относительно уже неподвижного полюса точки В. Так как вектор скорости Кинематическое исследование многозвенного плоского механизма. - student2.ru направлен перпендикулярно звену ВС ( Кинематическое исследование многозвенного плоского механизма. - student2.ru ÖСВ), то данную линию проводим из точки b на плане скоростей (см. рис.32).

Составим второе векторное уравнение за полюс возьмем точку О2.

Кинематическое исследование многозвенного плоского механизма. - student2.ru .

где Кинематическое исследование многозвенного плоского механизма. - student2.ru , вектор изображающий на плане скоростей Кинематическое исследование многозвенного плоского механизма. - student2.ru будет находиться в точке Р (РР = 0).

Так как вектор скорости Кинематическое исследование многозвенного плоского механизма. - student2.ru направлен перпендикулярно звену СО2 ( Кинематическое исследование многозвенного плоского механизма. - student2.ru ÖСО2), то данную линию проводим из точки Р на плане скоростей (см. рис.32).

В пересечении двух линий (ÖСО2) и (ÖВС) на плане скоростей определяем точку с.

Для нахождения скорости точки С по модулю ( Кинематическое исследование многозвенного плоского механизма. - student2.ru ), необходимо замерить отрезок Pс на плане скоростей и умножить на масштаб плана скоростей Кинематическое исследование многозвенного плоского механизма. - student2.ru (Pс составит 28,5 мм).

Кинематическое исследование многозвенного плоского механизма. - student2.ru см/с.

Для изображения вектора скорости точки С ( Кинематическое исследование многозвенного плоского механизма. - student2.ru ) на схеме механизма требуется вектор Pс с плана скоростей (см. рис.32) параллельно перенести в точку С механизма (см. рис.31).

Угловая скорость звена ВСО2 определена Кинематическое исследование многозвенного плоского механизма. - student2.ru с-1

2.6. Определим скорость точки D.

Для нахождения скорости точки D, требуется рассмотреть движение этой точки относительно двух полюсов, скорости которых известны.

Рассмотрим движение точки D относительно полюса точки C (так как скорость точки C определена). Составим векторное уравнение

Кинематическое исследование многозвенного плоского механизма. - student2.ru .

Согласно данному уравнению вектор скорости точки D ( Кинематическое исследование многозвенного плоского механизма. - student2.ru )изобразится вектором Pd на плане скоростей; вектор скорости точки C ( Кинематическое исследование многозвенного плоского механизма. - student2.ru ) изобразится вектором Pc на плане скоростей; вектор скорости Кинематическое исследование многозвенного плоского механизма. - student2.ru изобразится вектором сd на плане скоростей.

Под действием вектора скорости Кинематическое исследование многозвенного плоского механизма. - student2.ru , приложенного в точке D, звено CD будет приходить во вращение относительно уже неподвижного полюса точки С, с угловой скоростью Кинематическое исследование многозвенного плоского механизма. - student2.ru . Так как вектор скорости Кинематическое исследование многозвенного плоского механизма. - student2.ru направлен перпендикулярно звену CD ( Кинематическое исследование многозвенного плоского механизма. - student2.ru ÖCD), то данную линию проводим из точки с на плане скоростей (см. рис.32).

Составим второе векторное уравнение, за полюс возьмем точку О3, так как относительно этой точки звено DО3 вращается (рис.31), то точка О3 является неподвижной, поскольку закреплена в шарнирно неподвижной опоре, скорость точки О3 ( Кинематическое исследование многозвенного плоского механизма. - student2.ru ) равна нулю.

Кинематическое исследование многозвенного плоского механизма. - student2.ru .

Так как Кинематическое исследование многозвенного плоского механизма. - student2.ru , следовательно, вектор изображающий на плане скоростей Кинематическое исследование многозвенного плоского механизма. - student2.ru , будет находиться в точке Р (РР = 0).

Под действием вектора скорости Кинематическое исследование многозвенного плоского механизма. - student2.ru , приложенного в точке D, звено DО3 будет приходить во вращение относительно неподвижного полюса точки О3, с угловой скоростью Кинематическое исследование многозвенного плоского механизма. - student2.ru . Так как вектор скорости Кинематическое исследование многозвенного плоского механизма. - student2.ru направлен перпендикулярно звену DО3 ( Кинематическое исследование многозвенного плоского механизма. - student2.ru ÖDО3), то данную линию проводим из точки Р на плане скоростей (рис.32).

В пересечении двух линий (ÖDО3) и (ÖCD) на плане скоростей определяем точку d.

Для нахождения скорости точки D по модулю ( Кинематическое исследование многозвенного плоского механизма. - student2.ru ), необходимо замерить отрезок Pd на плане скоростей и умножить на масштаб плана скоростей Кинематическое исследование многозвенного плоского механизма. - student2.ru (Pd составит 18 мм).

Кинематическое исследование многозвенного плоского механизма. - student2.ru см/с.

Для изображения вектора скорости точки D ( Кинематическое исследование многозвенного плоского механизма. - student2.ru ) на схеме механизма, требуется вектор Pd с плана скоростей (см. рис.32) параллельно перенести в точку D механизма (см. рис.31).

2.7. Определим угловую скорость звена DC ( Кинематическое исследование многозвенного плоского механизма. - student2.ru ).

Звено DC приобретает угловую скорость Кинематическое исследование многозвенного плоского механизма. - student2.ru , относительно неподвижной точки C; под действием скорости точки D – относительно точки C ( Кинематическое исследование многозвенного плоского механизма. - student2.ru ). Для определения модуля скорости Кинематическое исследование многозвенного плоского механизма. - student2.ru необходимо на плане скоростей (см. рис.32) измерить отрезок cd и умножить на масштаб плана скоростей Кинематическое исследование многозвенного плоского механизма. - student2.ru (cd составит 21,6 мм).

Кинематическое исследование многозвенного плоского механизма. - student2.ru см/с

Для изображения вектора скорости Кинематическое исследование многозвенного плоского механизма. - student2.ru из точки D на схеме механизма требуется вектор cd с плана скоростей (см. рис.32) параллельно перенести в точку D механизма (см. рис.31).

Тогда угловая скорость Кинематическое исследование многозвенного плоского механизма. - student2.ru звена DC относительно центра вращения точки C, под действием вектора скорости Кинематическое исследование многозвенного плоского механизма. - student2.ru направлена против часовой стрелки на схеме механизма (см. рис.31). Определим численное значение угловой скорости Кинематическое исследование многозвенного плоского механизма. - student2.ru

Кинематическое исследование многозвенного плоского механизма. - student2.ru с-1.

2.8. Определим угловую скорость звена DО3 ( Кинематическое исследование многозвенного плоского механизма. - student2.ru ).

Звено DО3 приобретает угловую скорость Кинематическое исследование многозвенного плоского механизма. - student2.ru относительно неподвижной точки О3; под действием скорости точки D – относительно точки О3 ( Кинематическое исследование многозвенного плоского механизма. - student2.ru ). Вектор скорости Кинематическое исследование многозвенного плоского механизма. - student2.ru равен вектору Кинематическое исследование многозвенного плоского механизма. - student2.ru , см. п.2.6.

Тогда угловая скорость Кинематическое исследование многозвенного плоского механизма. - student2.ru звена DО3 относительно центра вращения точки О3, под действием вектора скорости Кинематическое исследование многозвенного плоского механизма. - student2.ru направлена по часовой стрелки на схеме механизма (рис.31). Определим численное значение угловой скорости Кинематическое исследование многозвенного плоского механизма. - student2.ru

Кинематическое исследование многозвенного плоского механизма. - student2.ru с-1.

2.9. Определим скорость точки E.

Так как точка Е принадлежит звену СD, у которого определены кинематические характеристики (скорости точек С, D), то положение точки е в плане скоростей определим методом обхода точек. Составим соотношение

Кинематическое исследование многозвенного плоского механизма. - student2.ru Кинематическое исследование многозвенного плоского механизма. - student2.ru мм.

Изобразим отрезок ce на плане скоростей (см. рис.31) из точки с в направлении точки d. Тогда вектор скорости точки Е ( Кинематическое исследование многозвенного плоского механизма. - student2.ru ) изобразится на плане скоростей вектором Ре, численное значение скорости Кинематическое исследование многозвенного плоского механизма. - student2.ru составит

Кинематическое исследование многозвенного плоского механизма. - student2.ru см/с.

Для изображения вектора скорости точки Е ( Кинематическое исследование многозвенного плоского механизма. - student2.ru ) на схеме механизма, требуется вектор Pе с плана скоростей (см. рис.32) параллельно перенести в точку Е механизма (см. рис.31).

2.10. Определим скорость точки F.

Для нахождения скорости точки F, требуется рассмотреть движение этой точки относительно двух полюсов, скорости которых известны.

Рассмотрим движение точки F относительно полюса точки E (так как скорость точки E определена). Составим векторное уравнение

Кинематическое исследование многозвенного плоского механизма. - student2.ru .

Согласно данному уравнению вектор скорости точки F ( Кинематическое исследование многозвенного плоского механизма. - student2.ru )изобразится вектором Pf на плане скоростей; вектор скорости точки E ( Кинематическое исследование многозвенного плоского механизма. - student2.ru ) изобразится вектором Pe на плане скоростей; вектор скорости Кинематическое исследование многозвенного плоского механизма. - student2.ru изобразится вектором ef на плане скоростей.

Под действием вектора скорости Кинематическое исследование многозвенного плоского механизма. - student2.ru приложенного в точке F звено FE будет приходить во вращение относительно уже неподвижного полюса точки E с угловой скоростью Кинематическое исследование многозвенного плоского механизма. - student2.ru . Так как вектор скорости Кинематическое исследование многозвенного плоского механизма. - student2.ru направлен перпендикулярно звену FE ( Кинематическое исследование многозвенного плоского механизма. - student2.ru ÖFE), то данную линию проводим из точки e на плане скоростей (см. рис.32).

Составим второе векторное уравнение, за полюс возьмем ось у - у, так как относительно этой оси точка F движется прямолинейно вдоль оси у - у (совершает возвратно-поступательное движение). Поскольку система отсчета ось у-у неподвижна (см. рис.31), то скорость оси у-у ( Кинематическое исследование многозвенного плоского механизма. - student2.ru ) равна нулю

Кинематическое исследование многозвенного плоского механизма. - student2.ru .

Так как Кинематическое исследование многозвенного плоского механизма. - student2.ru , следовательно, вектор изображающий на плане скоростей Кинематическое исследование многозвенного плоского механизма. - student2.ru , будет находиться в точке Р (РР=0).

Вектор скорости Кинематическое исследование многозвенного плоского механизма. - student2.ru направлен вдоль оси у-у ( Кинематическое исследование многозвенного плоского механизма. - student2.ru //у-у), данную линию проводим из точки Р на плане скоростей (см. рис.32).

В пересечении двух линий (ÖFE) и (//у-у) на плане скоростей определяем точку f.

Для нахождения скорости точки F по модулю ( Кинематическое исследование многозвенного плоского механизма. - student2.ru ), необходимо замерить отрезок Pf на плане скоростей и умножить на масштаб плана скоростей Кинематическое исследование многозвенного плоского механизма. - student2.ru (Pf составит 20,6 мм).

Кинематическое исследование многозвенного плоского механизма. - student2.ru см/с.

Для изображения вектора скорости точки F ( Кинематическое исследование многозвенного плоского механизма. - student2.ru ) на схеме механизма, требуется вектор Pf с плана скоростей (рис.32) параллельно перенести в точку F механизма (рис.31).

2.11. Определим угловую скорость звена FE ( Кинематическое исследование многозвенного плоского механизма. - student2.ru ).

Поскольку звено FE приобретает угловую скорость Кинематическое исследование многозвенного плоского механизма. - student2.ru относительно неподвижной точки Е; под действием скорости точки F – относительно точки E ( Кинематическое исследование многозвенного плоского механизма. - student2.ru ), для определения модуля скорости Кинематическое исследование многозвенного плоского механизма. - student2.ru необходимо на плане скоростей (рис.32) измерить отрезок ef и умножить на масштаб плана скоростей Кинематическое исследование многозвенного плоского механизма. - student2.ru (ef составит 31,7мм).

Кинематическое исследование многозвенного плоского механизма. - student2.ru см/с.

Для изображения вектора скорости Кинематическое исследование многозвенного плоского механизма. - student2.ru из точки F на схеме механизма, требуется вектор ef с плана скоростей (см. рис.32) параллельно перенести в точку F механизма (см. рис.31).

Тогда угловая скорость Кинематическое исследование многозвенного плоского механизма. - student2.ru звена FE относительно центра вращения точки E, под действием вектора скорости Кинематическое исследование многозвенного плоского механизма. - student2.ru направлена по часовой стрелке на схеме механизма (рис.31). Определим численное значение угловой скорости Кинематическое исследование многозвенного плоского механизма. - student2.ru

Кинематическое исследование многозвенного плоского механизма. - student2.ru с-1.

3. Определим скорости точек механизма, и угловые скорости звеньев методом мгновенного центра скоростей (МЦС).

Исходная схема изображена на рис.30.

3.1.Определим скорость точки А.

Точка А принадлежит звену АО1, которое совершает вращательное движение относительно неподвижной точки О1, тогда МЦС звена АО1 находится в точке О1.

Скорость точки будет равна

Кинематическое исследование многозвенного плоского механизма. - student2.ru см/с.

Вектор скорости точки А ( Кинематическое исследование многозвенного плоского механизма. - student2.ru ) будет направлен перпендикулярно радиусу вращения АО1 в сторону вращения угловой скорости ωО1 (рис.33).

3.2. Определим скорость точки В и угловую скорость звена АВ.

Для нахождения скорости точки В, требуется определить положение МЦС звена АВ точки РАВ. МЦС звена АВ находится в пересечении перпендикуляров к векторам скоростей точек А и В. Из точки А к вектору Кинематическое исследование многозвенного плоского механизма. - student2.ru проводим перпендикуляр (рис.33); точка В вращается относительно неподвижной точки О2, тогда вектор скорости Кинематическое исследование многозвенного плоского механизма. - student2.ru направлен из точки В перпендикулярно радиусу вращения ВО2, следовательно, перпендикуляр к скорости Кинематическое исследование многозвенного плоского механизма. - student2.ru проходит вдоль звена ВО2 (см. рис.33). В пересечении этих двух линий находится МЦС звена АВ, точка РАВ. Относительно точки РАВ звено АВ, под действием вектора скорости Кинематическое исследование многозвенного плоского механизма. - student2.ru , вращается с угловой скоростью Кинематическое исследование многозвенного плоского механизма. - student2.ru по часовой стрелке. Численное значение угловой скорости звена АВ составит

Кинематическое исследование многозвенного плоского механизма. - student2.ru .

Кинематическое исследование многозвенного плоского механизма. - student2.ru

Рис.33.

где АРАВ – радиус вращения точки А, относительно МЦС звена АВ (рис.33).

Данный отрезок требуется замерить и привести к размерностям исходных данных (АРАВ составит 37,8 см)

Кинематическое исследование многозвенного плоского механизма. - student2.ru с-1.

Поскольку точка В вращается на звене АВ относительно МЦС, то скорость точки В составит (BРАВ равен 10,3 см)

Кинематическое исследование многозвенного плоского механизма. - student2.ru см/с.

Вектор скорости точки В ( Кинематическое исследование многозвенного плоского механизма. - student2.ru ) направлен из точки В перпендикулярно радиусу вращения ВРАВ в сторону вращения угловой скорости Кинематическое исследование многозвенного плоского механизма. - student2.ru (см. рис.33).

3.3.Определим угловую скорость звена ВСО2 ( Кинематическое исследование многозвенного плоского механизма. - student2.ru ).

Поскольку звено ВСО2 совершает вращательное движение относительно неподвижной точки О2, то в точке О2 располагается МЦС звена ВСО2. Под действием скорости точки В ( Кинематическое исследование многозвенного плоского механизма. - student2.ru ) относительно точки О2, звено ВСО2 приобретает угловую скорость Кинематическое исследование многозвенного плоского механизма. - student2.ru , направленную против часовой стрелки (рис.33).

Определим численное значение угловой скорости Кинематическое исследование многозвенного плоского механизма. - student2.ru

Кинематическое исследование многозвенного плоского механизма. - student2.ru с-1.

3.4.Определим скорость точки С.

Так как точка С принадлежит звену ВСО2, которое вращается относительно МЦС точки О2, вектор скорости точки С ( Кинематическое исследование многозвенного плоского механизма. - student2.ru ) направлен перпендикулярно радиусу вращения СО2 в сторону угловой скорости Кинематическое исследование многозвенного плоского механизма. - student2.ru (см. рис.33). Численное значение скорости точки С составит

Кинематическое исследование многозвенного плоского механизма. - student2.ru см/с.

3.5. Определим скорость точки D и угловую скорость звена CD.

Для нахождения скорости точки D требуется определить положение МЦС звена CD точки РCD. МЦС звена CD находится в пересечении перпендикуляров к векторам скоростей точек C и D. Из точки C к вектору Кинематическое исследование многозвенного плоского механизма. - student2.ru проводим перпендикуляр (см. рис.33); точка D вращается относительно неподвижной точки О3, тогда вектор скорости Кинематическое исследование многозвенного плоского механизма. - student2.ru направлен из точки D перпендикулярно радиусу вращения DО3, следовательно, перпендикуляр к скорости Кинематическое исследование многозвенного плоского механизма. - student2.ru проходит вдоль звена DО3 (см. рис.33). На пересечении этих двух линий находится МЦС звена CD, точка РCD. Относительно точки РCD звено CD под действием вектора скорости Кинематическое исследование многозвенного плоского механизма. - student2.ru вращается с угловой скоростью Кинематическое исследование многозвенного плоского механизма. - student2.ru против часовой стрелки. Численное значение угловой скорости звена CD составит

Кинематическое исследование многозвенного плоского механизма. - student2.ru ,

где СРСD – радиус вращения точки C, относительно МЦС звена CD (см. рис.33).

Данный отрезок требуется замерить и привести к размерностям исходных данных (СРСD составит 79,8 см)

Кинематическое исследование многозвенного плоского механизма. - student2.ru с-1.

Поскольку точка D вращается на звене CD относительно МЦС, то скорость точки D составит

Кинематическое исследование многозвенного плоского механизма. - student2.ru см/с,

где DРCD равен 49,9 см.

Вектор скорости точки D ( Кинематическое исследование многозвенного плоского механизма. - student2.ru ) направлен из точки D перпендикулярно радиусу вращения DРСD в сторону вращения угловой скорости Кинематическое исследование многозвенного плоского механизма. - student2.ru (см. рис.33).

3.6.Определим угловую скорость звена DО3 ( Кинематическое исследование многозвенного плоского механизма. - student2.ru ).

Поскольку звено DО3 совершает вращательное движение относительно неподвижной точки О3, то точка О3 является МЦС звена DО3. Под действием скорости точки D ( Кинематическое исследование многозвенного плоского механизма. - student2.ru ) звено DО3 приобретает угловую скорость Кинематическое исследование многозвенного плоского механизма. - student2.ru относительно МЦС точки О3 в направлении движения часовой стрелки. Определим численное значение угловой скорости Кинематическое исследование многозвенного плоского механизма. - student2.ru

Кинематическое исследование многозвенного плоского механизма. - student2.ru с-1.

3.7.Определим скорость точки Е.

Так как точка Е принадлежит звену CD, которое вращается относительно МЦС точки РСD, то вектор скорости точки Е ( Кинематическое исследование многозвенного плоского механизма. - student2.ru ) направлен перпендикулярно радиусу вращения ЕРСD в сторону угловой скорости Кинематическое исследование многозвенного плоского механизма. - student2.ru (см. рис.33). Численное значение скорости точки Е составит (EРCD равен 60 см)

Кинематическое исследование многозвенного плоского механизма. - student2.ru см/с.

3.8. Определим скорость точки F и угловую скорость звена EF.

Для нахождения скорости точки F требуется определить положение МЦС звена EF точки РEF. МЦС звена EF находится на пересечении перпендикуляров к векторам скоростей точек Е и F. Из точки E к вектору Кинематическое исследование многозвенного плоского механизма. - student2.ru проводим перпендикуляр (см. рис.33); точка F движется прямолинейно вдоль оси у-у (совершает возвратно-поступательное движение). Вектор скорости Кинематическое исследование многозвенного плоского механизма. - student2.ru направлен вдоль оси у-у ( Кинематическое исследование многозвенного плоского механизма. - student2.ru //у-у), восстанавливаем перпендикуляр к оси у-у из точки F.

В пересечении этих двух линий находится МЦС звена EF – точка РEF. Относительно точки РEF звено EF, под действием вектора скорости Кинематическое исследование многозвенного плоского механизма. - student2.ru , вращается с угловой скоростью Кинематическое исследование многозвенного плоского механизма. - student2.ru по часовой стрелке. Численное значение угловой скорости звена EF составит

Кинематическое исследование многозвенного плоского механизма. - student2.ru ,

где ЕРЕF – радиус вращения точки E относительно МЦС звена EF (рис.33), данный отрезок требуется замерить и привести к размерностям исходных данных (ЕРЕF составит 20,3см)

Кинематическое исследование многозвенного плоского механизма. - student2.ru с-1.

Поскольку точка F вращается на звене EF относительно МЦС, то скорость точки F составит (FРEF равен 19,6см)

Кинематическое исследование многозвенного плоского механизма. - student2.ru см/с.

Вектор скорости точки F ( Кинематическое исследование многозвенного плоского механизма. - student2.ru ) направлен из точки F перпендикулярно радиусу вращения FРEF в сторону вращения угловой скорости Кинематическое исследование многозвенного плоского механизма. - student2.ru (см. рис.33).

4. Проверка допустимости приведенных расчетов скоростей многозвенного механизма методами плана и МЦС.

Таблица 3.

Сравниваемая величина По методу плана По методу МЦС Процент расхождения, Кинематическое исследование многозвенного плоского механизма. - student2.ru
VA 0%
VB 12,5 12,4 0,8%
VC 10,7 10,5 1,9%
VD 6,75 6,6 2,2%
VE 7,9 1,3%
VF 7,73 7,65 1%
ωAB 1,2 1,2 0%
ωCD 0,135 0,132 2,2%
ωEF 0,4 0,39 2,5%
ωO2 0,36 0,35 2,8%
ωO3 0,135 0,132 2,2%

Если расхождение сравниваемых величин не превышает 5%, то приведенное решение считается верным.

5. Определим ускорения точек А, В, М.

5.1. Методом полюса с помощью построения плана ускорений.

5.1.1. Определим ускорение точки А ( Кинематическое исследование многозвенного плоского механизма. - student2.ru ).

Точка А вращается относительно неподвижной точки О1 с постоянной угловой скоростью ωО1 = 3с-1.

Кинематическое исследование многозвенного плоского механизма. - student2.ru , (81)

где Кинематическое исследование многозвенного плоского механизма. - student2.ru – нормальное (центростремительное) ускорение точки А на звене АО1;

Кинематическое исследование многозвенного плоского механизма. - student2.ru – касательное ускорение точки А на звене АО1.

Нормальное ускорение составит

Кинематическое исследование многозвенного плоского механизма. - student2.ru см /с2.

Кинематическое исследование многозвенного плоского механизма. - student2.ru Вектор Кинематическое исследование многозвенного плоского механизма. - student2.ru направлен из точки А к центру вращения точке О1 на схеме механизма (рис.34).

Касательное ускорение составит

Кинематическое исследование многозвенного плоского механизма. - student2.ru .

Так как угловая скорость вращения постоянна, то Кинематическое исследование многозвенного плоского механизма. - student2.ru , то Кинематическое исследование многозвенного плоского механизма. - student2.ru .

Тогда, согласно уравнению (81)

Кинематическое исследование многозвенного плоского механизма. - student2.ru .

Изобразим вектор ускорения точки А на плане ускорений (рис. 35). Пусть вектор Кинематическое исследование многозвенного плоского механизма. - student2.ru изображается на плане ускорений вектором Кинематическое исследование многозвенного плоского механизма. - student2.ru ; примем Кинематическое исследование многозвенного плоского механизма. - student2.ru мм. Масштаб плана ускорений составит

Кинематическое исследование многозвенного плоского механизма. - student2.ru см/(мм∙с2).

Рис. 34.
5.1.2. Определим ускорение точки В ( Кинематическое исследование многозвенного плоского механизма. - student2.ru ) и угловое ускорение звена АВ ( Кинематическое исследование многозвенного плоского механизма. - student2.ru ).

Рассмотрим движение точки В относительно полюса точки А, составим первое векторное уравнение

Кинематическое исследование многозвенного плоского механизма. - student2.ru ,

Кинематическое исследование многозвенного плоского механизма. - student2.ru Кинематическое исследование многозвенного плоского механизма. - student2.ru где Кинематическое исследование многозвенного плоского механизма. - student2.ru – нормальное ускорение точки В во вращательном движении относительно неподвижного полюса точки А; на плане ускорений вектор Кинематическое исследование многозвенного плоского механизма. - student2.ru изобразится вектором al;

Кинематическое исследование многозвенного плоского механизма. - student2.ru – касательное (вращательное) ускорение точки В во вращательном движении относительно неподвижного полюса точки А; на плане ускорений вектор Кинематическое исследование многозвенного плоского механизма. - student2.ru изобразится вектором lb;

Рис. 35. План ускорений.
Кинематическое исследование многозвенного плоского механизма. - student2.ru – вектор ускорения точки В; на плане ускорений вектор Кинематическое исследование многозвенного плоского механизма. - student2.ru изобразится вектором Кинематическое исследование многозвенного плоского механизма. - student2.ru .

Численное значение нормального ускорения составит

Кинематическое исследование многозвенного плоского механизма. - student2.ru см /с2.

Вектор нормального ускорения точки В относительно полюса точки А ( Кинематическое исследование многозвенного плоского механизма. - student2.ru ) направлен из точки В к точке А на схеме механизма (рис. 34). На плане ускорений (рис. 35) вектор Кинематическое исследование многозвенного плоского механизма. - student2.ru изобразится из точки а, длина al составит

al= Кинематическое исследование многозвенного плоского механизма. - student2.ru мм.

Вектор ускорения Кинематическое исследование многозвенного плоского механизма. - student2.ru направлен из точки В перпендикулярно звену АВ на схеме механизма ( Кинематическое исследование многозвенного плоского механизма. - student2.ru ÖВА) (см. рис. 34). На плане ускорений (см. рис. 35) из точки l изображаем линию, вдоль которой направлен вектор ускорения Кинематическое исследование многозвенного плоского механизма. - student2.ru .

Рассмотрим движение точки В относительно полюса точки О2, составим второе векторное уравнение ускорений

Кинематическое исследование многозвенного плоского механизма. - student2.ru ,

где Кинематическое исследование многозвенного плоского механизма. - student2.ru – ускорение точки О2; точка О2 является неподвижной, поскольку закреплена в шарнирнонеподвижной опоре, ускорение точки О2 ( Кинематическое исследование многозвенного плоского механизма. - student2.ru ) равна нулю, следовательно, изобразится на плане ускорений

вектором Кинематическое исследование многозвенного плоского механизма. - student2.ru ( Кинематическое исследование многозвенного плоского механизма. - student2.ru = 0).

Кинематическое исследование многозвенного плоского механизма. - student2.ru – нормальное ускорение точки В во вращательном движении относительно неподвижного полюса точки О2; на плане ускорений вектор Кинематическое исследование многозвенного плоского механизма. - student2.ru изобразится вектором Кинематическое исследование многозвенного плоского механизма. - student2.ru ;

Кинематическое исследование многозвенного плоского механизма. - student2.ru – касательное (вращательное) ускорение точки В во вращательном движении относительно неподвижного полюса точки О2; на плане ускорений вектор Кинематическое исследование многозвенного плоского механизма. - student2.ru изобразится вектором Кинематическое исследование многозвенного плоского механизма. - student2.ru .

Численное значение нормального ускорения составит

Кинематическое исследование многозвенного плоского механизма. - student2.ru см /с2.

Вектор нормального ускорения точки В относительно полюса точки О2 ( Кинематическое исследование многозвенного плоского механизма. - student2.ru ) направлен из точки В к точки О2 на схеме механизма (см. рис. 34). На плане ускорений (см. рис. 35) вектор Кинематическое исследование многозвенного плоского механизма. - student2.ru изобразится из точки Кинематическое исследование многозвенного плоского механизма. - student2.ru , длина Кинематическое исследование многозвенного плоского механизма. - student2.ru составит

Кинематическое исследование многозвенного плоского механизма. - student2.ru = Кинематическое исследование многозвенного плоского механизма. - student2.ru мм.

Вектор ускорения Кинематическое исследование многозвенного плоского механизма. - student2.ru направлен из точки В перпендикулярно звену ВО2 на схеме механизма ( Кинематическое исследование многозвенного плоского механизма. - student2.ru ÖВО2) (см. рис.34). На плане ускорений (см. рис. 35) из точки k изображаем линию, вдоль которой направлен вектор ускорения Кинематическое исследование многозвенного плоского механизма. - student2.ru .

В пересечении двух линий ( Кинематическое исследование многозвенного плоского механизма. - student2.ru ÖВО2) и ( Кинематическое исследование многозвенного плоского механизма. - student2.ru ÖВА) определяем точку b (см. рис. 35).

Численное значение вектора ускорения точки В составит ( Кинематическое исследование многозвенного плоского механизма. - student2.ru составит 32,4 мм)

Кинематическое исследование многозвенного плоского механизма. - student2.ru см/с2.

Для изображения вектора ускорения точки В ( Кинематическое исследование многозвенного плоского механизма. - student2.ru ) на схеме механизма, требуется вектор Кинематическое исследование многозвенного плоского механизма. - student2.ru с плана ускорений (см. рис.35) параллельно перенести в точку В механизма (см. рис.34).

Поскольку звено АВ приобретает угловое ускорение Кинематическое исследование многозвенного плоского механизма. - student2.ru относительно неподвижной точки А под действием касательного ускорения точки В относительно точки А ( Кинематическое исследование многозвенного плоского механизма. - student2.ru ), то для определения модуля ускорения Кинематическое исследование многозвенного плоского механизма. - student2.ru необходимо на плане ускорений (см. рис.35) измерить отрезок lb и умножить на масштаб плана ускорений Кинематическое исследование многозвенного плоского механизма. - student2.ru (lb составит 7,25 мм).

Кинематическое исследование многозвенного плоского механизма. - student2.ru см/с2.

Для изображения вектора ускорения Кинематическое исследование многозвенного плоского механизма. - student2.ru из точки В на схеме механизма требуется вектор lb с плана ускорений (см. рис.35) параллельно перенести в точку В механизма (см. рис.34).

Тогда угловое ускорение Кинематическое исследование многозвенного плоского механизма. - student2.ru звена АВ относительно центра вращения точки А под действием вектора ускорения Кинематическое исследование многозвенного плоского механизма. - student2.ru направлено против часовой стрелки на схеме механизма (см. рис.34). Определим численное значение углового ускорения Кинематическое исследование многозвенного плоского механизма. - student2.ru

Кинематическое исследование многозвенного плоского механизма. - student2.ru с-2.

5.1.3. Определим ускорение точки М ( Кинематическое исследование многозвенного плоского механизма. - student2.ru ).

Поскольку точка М принадлежит звену АВ (при этом известно ускорение точек А и В), то ускорение точки М можно определить методом обхода точек на плане ускорений. Точка М делит звено АВ пополам, следовательно, на плане ускорений точка m рассекает отрезок аb по середине (рис.35). На плане ускорений вектор точки Кинематическое исследование многозвенного плоского механизма. - student2.ru изобразится вектором Кинематическое исследование многозвенного плоского механизма. - student2.ru . Численное значение ускорения точки М составит ( Кинематическое исследование многозвенного плоского механизма. - student2.ru равен 46,2 мм)

Кинематическое исследование многозвенного плоского механизма. - student2.ru см/с2.

Для изображения вектора ускорения Кинематическое исследование многозвенного плоского механизма. - student2.ru из точки М на схеме механизма требуется вектор Кинематическое исследование многозвенного плоского механизма. - student2.ru с плана ускорений (см. рис.35) параллельно перенести в точку М механизма (см. рис.34).

5.2. Методом мгновенного центра ускорений (МЦУ)

5.2.1.Определим положение МЦУ звена АВ.

Ускорение точки А ( Кинематическое исследование многозвенного плоского механизма. - student2.ru ) определяется по пункту 5.1.1, изобразим на схеме (рис. 36). Укажем угловую скорость и угловое ускорение звена АВ, Кинематическое исследование многозвенного плоского механизма. - student2.ru и Кинематическое исследование многозвенного плоского механизма. - student2.ru , соответственно, относительно полюса точки А.

Наши рекомендации