Тема 1.1. Теория пределов. Непрерывность
В результате измерения физических величин (время, площадь, объем, масса, скорость и т.д.) определяются их числовые значения. Математика занимается величинами, отвлекаясь от их конкретного содержания. В дальнейшем, говоря о величинах, мы будем иметь в виду их числовые значения. В различных явлениях некоторые величины изменяются, а другие сохраняют свое числовое значение. Например, при равномерном движении точки время и расстояние меняются, а скорость остается постоянной.
Переменной величиной называется величина, которая принимает различные числовые значения. Величина, числовые значения которой не меняются, называется постоянной. Переменные величины будем обозначать буквами x, y, z,…, постоянные – a, b, c,…
Заметим, что в математике постоянная величина часто рассматривается как частный случай переменной, у которой все числовые значения одинаковы.
Областью изменения переменной величины называется совокупность всех принимаемых ею числовых значений. Область изменения может состоять как из одного или нескольких промежутков, так и из одной точки.
Упорядоченная переменная величина. Числовая последовательность
Будем говорить, что переменная x есть упорядоченная переменная величина, если известна область ее изменения, и про каждые из двух любых ее значений можно сказать, какое из них предыдущее и какое последующее.
Частным случаем упорядоченной переменной величины является переменная величина, значения которой образуют числовую последовательность x1,x2,…,xn,… Для таких величин при i < j, i, j Î N, значение xi считается предшествующим, а xj – последующим независимо от того, какое из этих значений больше. Таким образом, числовая последовательность – это переменная величина, последовательные значения которой могут быть перенумерованы. Числовую последовательность будем обозначать
Отдельные числа последовательности называются ее элементами.
При изучении различных явлений природы и решении технических задач, а, следовательно, и в математике приходится рассматривать изменение одной величины в зависимости от изменения другой. Так, например, известно, что площадь круга выражается через радиус формулой S = πr2. Если радиус r принимает различные числовые значения, то площадь S также принимает различные числовые значения, т.е. изменение одной переменной влечет изменение другой.
Если каждому значению переменной x, принадлежащему некоторой области, соответствует одно определенное значение другой переменной y, то y называется функцией переменной х. Символически будем записывать y=f(x). При этом переменная x называется независимой переменной или аргументом.
Множество значений x, для которых можно определить значения функции y по правилу f(x), называется областью определения функции.
Заметим, что числовая последовательность также является функцией, область определения которой совпадает с множеством натуральных чисел.
Понятие предела числовой последовательности
Число a называется пределом последовательности x = {xn }, если для произвольного заранее заданного сколь угодно малого положительного числа ε найдется такое натуральное число N, что при всех n>N выполняется неравенство |xn - a| < ε.
Если число a есть предел последовательности x = {xn}, то говорят, что xn стремится к a.
Теория пределов
Число А называется пределом функции y=f(х) при х, стремящемсяк а, если для любой последовательности чисел х1, х2, х3, …, .хn ,… сходящейся к числу а, следует, что последовательность значений функции f(х1), f(х2),…, f(хn)… сходится к числу А.
Предел функции в точке а обозначается
.
Основные теоремы о пределах
Приведем основные теоремы, на которых основано вычисление пределов:
1.
2.
3.
4.
5.
6.
Все правила имеют смысл, если пределы функций и существуют.
Техника вычисления пределов
При вычислении предела элементарной функции f(x) приходится сталкиваться с двумя существенно различными типами примеров.
· Функция f(x) определена в предельной точке x = a. Тогда
.
· Функция f(x) в предельной точке x = a не определена или же вычисляется предел функции при x→∞. Тогда вычисление предела требует в каждом случае индивидуального подхода.
Необходимо помнить, что
, , , , , .
Более сложными случаями нахождения предела являются такие, когда функция f(x) в точке x = a или при x→∞ представляет собой неопределенность (типа , , , , , , ).
При вычислении пределов при основные теоремы о пределах сохраняют силу и, кроме того, используются правила:
а) чтобы раскрыть неопределенность типа , необходимо числитель и знаменатель дроби разделить на наибольшую степень переменной;
б) чтобы раскрыть неопределенность типа , необходимо числитель и знаменатель дроби разделить на наименьшую степень переменной ;
в) чтобы раскрыть неопределенность типа , иногда достаточно числить и знаменатель дроби разложить на множители и затем сократить дробь на множитель, приводящий к неопределенности;
г) чтобы раскрыть неопределенность типа , зависящую от
иррациональности, достаточно перевести иррациональность из числителя в знаменатель или из знаменателя в числитель и сократить на множитель, приводящий к неопределенности;
д) чтобы раскрыть неопределенность типа , необходимо числитель и знаменатель дроби одновременно умножить на сопряженное выражение и тем самым свести к неопределенности вида или .
Контрольные вопросы:
1. Что называется функцией?
2. Что такое область определения и область значений функции
3. Перечислите способы задания функций, их достоинства.
4. Перечислите основные свойства функций.
5. Дайте определение предела функции в точке.
6. Какая функция называется непрерывной в точке?
7. Сформулируйте основные свойства пределов.
8. Как раскрывается неопределенность вида , ?