Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач.

Используемые программные средства: пакет MathCAD.

Теоретические сведения

Решение уравнения с одним неизвестным. Метод простых итераций.Пусть задана непрерывная функция Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru и требуется найти корни уравнения

Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru (5.1)

Уравнение (5.1) заменим эквивалентным ему уравнением

Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru (5.2)

Выберем некоторое нулевое приближение и вычислим последующие приближения по формулам:

Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru (5.3)

Процесс итераций сходится Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru , если выполнено условие Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru на отрезке [a, b], содержащем корень Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru .

Метод Ньютона.Пусть дано уравнение Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru , корень которого Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru отделен. Суть метода состоит в том, что дуга кривой Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru заменяется касательной к ней и за приближение корня берется абсцисса точки пересечения касательной с осью OX.

В методе касательных Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru приближение вычисляется по формуле Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru , Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru , в которой за нулевое приближение Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru принимается такое значение из отрезка [a, b], для которого выполняется условие Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru .

Оценка абсолютной погрешности определяется формулой Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru , где Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru .

Средства пакета MathCAD для решения нелинейных уравнений вида Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru .Для решения уравнений MathCAD имеет встроенную функцию root, которая, в зависимости от типа задачи, может включать либо два, либо четыре аргумента и, соответственно, работает по-разному.

- root (f(х), х);

- root(f(х), х, а, b),

где f(х) – скалярная функция, определяющая уравнение;

х – скалярная переменная, относительно которой решается уравнение;

а, b – границы интервала, внутри которого происходит поиск корня.

Первый тип функции root требует дополнительного задания начального значения (guess value) переменной х. Для этого нужно предварительно присвоить этой переменной некоторое число, в окрестности которого будет производиться поиск корня. Таким образом, присвоение начального значения требует априорной информации о примерной локализации корня. Отделить корень можно, построив график функции f(х)и с помощью опцииTrace(см.лабораторную работу № 3)определить примерно абсциссу пересечения графиком оси ОХ.

Пример 5.1.

Рассмотрим уравнение Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru , корни которого известны заранее.

Примем начальное значение Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru .

Решение.

Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru

Поиск корня уравнения в заданном интервале.Когда root имеет четыре аргумента, следует помнить о двух ее особенностях:

- внутри интервала Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru не должно находиться более одного корня, иначе будет найден один из них, заранее неизвестно, какой именно;

- значения Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru и Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru должны иметь разный знак, иначе будет выдано сообщение об ошибке.

Пример 5.2.Найти корень уравнения Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru из интервала Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru .

Решение.

 
  Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru

Поиск мнимых корней уравнения.Если уравнение не имеет действительных корней, но имеет мнимые, то их также можно найти.

Пример 5.3.Решить уравнение Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru .

 
  Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru

Решение.

Замечание.Явный вид функции Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru может быть определен непосредственно в теле функции root.

Корни полинома.Если функция Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru является полиномом, то все его корни можно определить, используя встроенную функцию polyroots(v), где v – вектор, составленный из коэффициентов полинома.

Поскольку полином n-й степени имеет ровно n корней (некоторые из них могут быть кратными), вектор v должен состоять из Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru элементов. Результатом действия функции polyroots является вектор, составленный из n корней рассматриваемого полинома. При этом не требуется вводить какое-либо начальное приближение, как для функции root.

Пример 5.4.

Найти корни полинома Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru

Решение.

1) Задаём полином Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru .

2) Определяем вектор коэффициентов полинома

Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru

3) Находим вектор корней полинома

Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru

4)

 
  Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru

Представляем результаты на графике:

Некоторые уравнения можно решить точно с помощью символьного процессора MathCAD. Делается это очень похоже на численное решение систем уравнений с применением вычислительного блока (см. пункт «Средства пакета MathCad для решения систем уравнений»). Присваивать неизвестным начальные значения нет необходимости.

Пример 5.5

Given

Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru

Find Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru

Вместо знака равенства после функции Find в листингах следует стрелка - знак символьных вычислений, который можно ввести с панели Symbolic (Символика) или, нажав клавиши <Ctrl>+<.>. При этом уравнения должны иметь вид логических выражений (знаки равенства нужно вводить с помощью панели Booleans (Булевы операторы) – жирные знаки равенства).

С помощью символьного процессора решить уравнение с одним неизвестным можно и другим способом:

1. Введите уравнение, пользуясь панелью Booleans (Булевы операторы) или нажав клавиши <Ctrl>+<.> для получения логического знака равенства.

2. Щелчком мыши выберите переменную, относительно которой требуется решить уравнение.

3. Выберите в меню Symbolics (Символика) пункт Variable/Solve (Переменная/Решить).

После строки с уравнением появится строка с решением или сообщение о невозможности символьного решения этого уравнения.

Символьные вычисления могут производиться и над уравнениями, которые помимо неизвестных содержат различные параметры.

Решение систем нелинейных уравнений. Метод простых итераций (последовательных приближений).Систему нелинейных уравнений можно записать в векторном виде

Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru (5.4)

или подробно в координатном виде Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru .

Нулевое приближение в случае двух переменных находится графически: на плоскости Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru строят кривые Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru и Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru и находят точки их пересечения.

Для трех и более переменных удовлетворительных способов подбора нулевых приближений нет.

Заменим нелинейную систему (5.4) эквивалентной системой вида

Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru . (5.5)

или Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru .

Если итерации сходятся, то они сходятся к решению уравнения (предполагается, что решение существует).

Заканчивать итерации можно по критерию сходимости: Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru , выполнение которого необходимо проверить для каждой компоненты.

Средства пакета MathCAD для решения систем нелинейных уравнений.При решении систем нелинейных уравнений, а также задач оптимизации используется специальный вычислительный блок, открываемый ключевым словом Given и имеющий следующую структуру:

Начальные условия

Given

Уравнения

Ограничительные условия

Выражения с функциями Find, Minner (Maximize, Minimize).

Начальные условияопределяют начальные значения искомых переменных и задаются в виде var:=value, т.е. обычным присваиванием переменным заданных значений.

Уравнения задаются в виде expr_left=expr_right с применением жирного знака равенства между левой и правой частями каждого уравнения, который вводится либо с палитры Boolean (Булевы операторы), либо сочетанием клавиши <Ctrl>+<=>.

Встроенная функция Find (x1,... ,xn) возвращает значение одной или нескольких переменных для точного решения. Таким образом, число элементов вектора решений равно числу аргументов функции Find.

Пример 5.6. Решить систему уравнений Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru в окрестности точки Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru .

 
  Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru

Решение.

Выполним проверку

Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru

Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru

Ответ: решением системы является точка Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru

Замечание. Вычислительный блок использует константу CTOL в качестве погрешности выполнения уравнений, введенных после ключевого слова Given. Например, если Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru , то уравнение Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru будет считаться выполненным и при Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru , и при Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru .

Вычислительным блоком с функцией Find можно найти и корень уравнения с одним неизвестным. Действие Find в этом случае совершенно аналогично уже рассмотренным примерам. Задача поиска корня рассматривается как решение системы, состоящей из одного уравнения. Единственным отличием будет скалярный, а не векторный тип числа, возвращаемого функцией Find (см. пример 5.5).

Если окрестность, в которой требуется найти решение системы, не задана, начальное приближение для решения можно задать, построив в одной графической области графики кривых, задаваемых уравнениями системы.

Пример 5.7.

Найти решение системы уравнений Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru

Решение. Зададим функции Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru и Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru , соответствующие первому и второму уравнениям:

Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru

Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru

Построим графики поверхностей, описываемых этими уравнениями (рис. 5.1).

На графике видно, что в качестве начального приближения можно выбрать, например, точку (0,0).

Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru

Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru .

Given

Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru

Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru

Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru

Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru

Выполним проверку, подставив найденные значения в функции Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru и Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru :

Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru

Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru

Ответ: решением системы является точка Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru .

Если не удаётся решить точно систему уравнений с помощью функции Find, можно попытаться найти её приближённое решение, заменив в вычислительном блоке функцию Find на функцию Minerr с тем же набором параметров.

Пример 5.8.

Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru

Given

Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru

Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru

Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru

Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru

Минимизация функций.Система нелинейных уравнений в векторной форме

Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru (5.6)

Рассмотрим функцию Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru . Эта функция неотрицательна и обращается в нуль в том и только в том случае, если Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru . Таким образом, решение исходной системы уравнений (5.6) будет одновременно нулевым минимумом скалярной функции многих переменных Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru Иногда проще искать такой минимум, чем решать систему уравнений. Задачи минимизации функций принято называть задачами оптимизации, так как основной целью решения этих задач обычно является достижение оптимального режима работы. При этом минимизируемую функцию обычно называют целевой функцией.

Решение задач оптимизации складывается из следующих элементов: создание математической модели явления, определение целевой функции и важнейших параметров, подлежащих оптимизации, непосредственная минимизация некоторой функции (обычно большого числа переменных).

Функции MathCAD для решения задач оптимизации.MathCAD с помощью встроенных функций решается только задача поиска локального экстремума. Чтобы найти глобальный максимум (или минимум), требуется либо сначала вычислить все их локальные значения и потом выбрать из них наибольший (наименьший), либо предварительно просканировать с некоторым шагом рассматриваемую область, чтобы выделить из нее подобласть наибольших (наименьших) значений функции и осуществить поиск глобального экстремума, уже находясь в его окрестности. Второй вариант таит в себе опасность уйти в окрестность другого локального экстремума, но часто может быть предпочтительнее при решении практических задач.

Для поиска локальных экстремумов имеются две встроенные функции, которые могут применяться как в пределах вычислительного блока, так и автономно.

- Minimize (f, x1, ..., хn) – вектор значений аргументов, при которых функция f достигает минимума;

- Maximize (f, x1, ..., хn) – вектор значений аргументов, при которых функция f достигает максимума;

- f(x1, ..., хn)– заданная целевая функция;

- x1, ..., хn – аргументы, по которым производится минимизация (максимизация).

Всем аргументам функции f предварительно следует присвоить некоторые значения, причем для тех переменных, по которым производится минимизация, они будут восприниматься как начальные приближения.

Пример 5.9.Поиск локального экстремума в окрестности заданной точки.

Найти максимум функции Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru в окрестности точки (4; 5).

Решение.

Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru

Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru; Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru

Given

Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru

Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru

Ответ:функция имеет максимум, равный 4, в точке Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru .

Пример 5.10.Поиск условного экстремума функции.

Найти минимум функции Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru при условиях Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru .

Решение.

1) Задаем целевую функцию, матрицу системы ограничений и вектор правой части этой системы

Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru

Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru .

2) Задаем начальное приближение решения: Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru

3) С помощью вычислительного блока находим вектор R, на котором достигается минимальное значение функции Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru .

Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru

Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru

Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru

Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru

Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru

Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru

Ответ: минимум функции равен 32.155 и достигается в точке Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru .

Порядок выполнения работы

Ответить на контрольные вопросы. Выполнить примеры из практической части. Выполнить задачи своего варианта.

Содержание отчета

Отчет должен содержать ответы на контрольные вопросы и результат решения соответствующего варианта.

Контрольные вопросы

1. Что значит отделить корень Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru уравнения Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru ?

2. Какие функции могут быть использованы для решения нелинейных уравнений?

3. Опишите конструкцию вычислительного блока.

4. В чем различие между функциями Find и Minner для решения систем нелинейных уравнений?

5. Где необходимо расположить ограничительные условия при решении задачи оптимизации?

Варианты заданий

Вариант 1

1. Решить уравнение Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru , используя встроенные функции rootи Find. Сравнить полученные решения.

2. Найти все корни полинома Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru . Проиллюстрировать решение графически.

3. Решить систему нелинейных уравнений: Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru .

4. Найти максимум функции Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru .

Вариант 2

1. Решить уравнение Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru , используя встроенные функции rootи Find. Сравнить полученные решения.

2. Найти все корни полинома Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru . Проиллюстрировать решение графически.

3. Решить систему нелинейных уравнений: Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru .

4. Найти максимум функции Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru при ограничении Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru , Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru , Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru .

Вариант 3

1. Решить уравнение Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru , используя встроенные функции root и Find. Сравнить полученные решения.

2. Найти все корни полинома Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru . Проиллюстрировать решение графически.

3. Решить систему нелинейных уравнений: Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru .

4. Найти максимум функции Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru при ограничении Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru , Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru , Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru , Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru .

Вариант 4

1. Решить уравнение Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru , используя встроенные функции rootи Find. Сравнить полученные решения.

2. Найти все корни полинома Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru . Проиллюстрировать решение графически.

3. Решить систему нелинейных уравнений: Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru .

4. Найти максимум функции Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru .

Вариант 5

1. Решить уравнение Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru , используя встроенные функции rootи Find. Сравнить полученные решения.

2. Найти все корни полинома Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru . Проиллюстрировать решение графически.

3. Решить систему нелинейных уравнений: Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru .

4. Найти минимальное и максимальное значения функции Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru .

Вариант 6

1. Решить уравнение Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru , используя встроенные функции rootи Find. Сравнить полученные решения.

2. Найти все корни полинома Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru , проиллюстрировать решение графически.

3. Решить систему нелинейных уравнений: Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru

4. Найти максимум функции Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru при условиях Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru , Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru , Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru , Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru , Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru , Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru .

Вариант 7

1. Решить уравнение Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru , используя встроенные функции rootи Find. Сравнить полученные решения.

2. Найти все корни полинома Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru . Проиллюстрировать решение графически.

3. Решить систему нелинейных уравнений: Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru . Выполнить проверку.

4. Найти минимум функции Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru при условиях Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru , Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru , Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru , Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru , Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru .

Вариант 8

1. Решить уравнение Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru , используя встроенные функции rootи Find. Сравнить полученные решения.

2. Найти все корни полинома Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru . Проиллюстрировать решение графически.

3. Решить систему нелинейных уравнений: Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru . Выполнить проверку.

4. Найти минимум функции Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru при условиях Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru , Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru , Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru , Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru , Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru .

Вариант 9

1. Решить уравнение Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru , используя встроенные функции rootи Find. Сравнить полученные решения.

2. Найти все корни полинома Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru . Проиллюстрировать решение графически.

3. Решить систему нелинейных уравнений: Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru . Выполнить проверку

4. Найти минимум функции Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru при условиях Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru , Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru , Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru , Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru , Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru .

Вариант 10

1. Решить уравнение, предварительно отделив корни Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru , используя встроенные функции rootи Find. Сравнить полученные решения.

2. Найти все корни полинома Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru . Проиллюстрировать решение графически.

3. Решить систему нелинейных уравнений: Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru . Выполнить проверку.

4. Найти минимум функции Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru при условиях Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru , Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru , Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru , Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru , Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru .

Л а б о р а т о р н а я р а б о т а № 6

ЭЛЕМЕНТЫ ПРОГРАММИРОВАНИЯ В ПАКЕТЕ ИНЖЕНЕРНЫХ РАСЧЕТОВ MATHCAD

Цель работы: Изучить возможности символьного пакета Mathcad для программирования условных и циклических выражений. Приобретение навыков написания простейших программ.

Используемые программные средства:Mathcad.

Теоретические сведения

Пакет инженерных расчетов Mathcad предлагает использовать средства программирования, которые позволяют пользователю создавать свои собственные функции, используя оператор присваивания, условный оператор, операторы цикла, операторы прерывания вычислений и оператор обработки ошибок, что оптимизирует работу пользователя и улучшает читаемость программы.

Для написания функций используется понятие программный блок (другое название – программный модуль).

Программный блок пишется с помощью инструкций (операторов) программирования. Инструкции программирования находятся на палитре компонент Programming, которую можно вызвать щелчком мыши на кнопке Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru палитры компонент Math, либо выбрать пункт главного меню ViewToolbarsProgramming.

Палитра компонент программирования имеет вид, изображенный на рис. 6.1.

Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru  

Основной инструкцией программирования является инструкция Add Line, которая создает программный блок и позволяет добавлять инструкции в программный блок. Маска программного блока выглядит следующим образом Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru , где черные квадраты – это поля для ввода инструкций.

Следующей по значимости инструкцией является инструкция локального присваивания Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru . При присваивании значения переменной внутри программного блока используется не обычный оператор присваивания :=, а оператор локального присваивания Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru . Если в программном блоке переменной присвоено значение, то областью действия данной переменной будет только программный блок. Вне данного программного блока может существовать другая переменная с тем же самым именем (глобальная переменная), но при этом они являются различными. Если глобальная переменная перед выполнением программного блока имела некоторое значение, то оно не изменится, если в следом идущем программном блоке локальная переменная с тем же именем будет принимать другие значения. В программном блоке могут фигурировать и переменные, которым раньше в программном блоке не было присвоено никакого значения, в таком случае данные переменные должны быть определены глобально – до выполнения программного блока.

Результатом выполнения программного блока есть значение, которое является последним вычисленным в программном блоке.

Пример 6.1. Найти значение выражения Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru при Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru и Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru . Программный блок, вычисляющий данное значение, приведен на рис. 6.2.

Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru
  Рис. 6.2

Разумеется, значения программных блоков можно присваивать переменным (рис. 6.3).

Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru
  Рис. 6.3

Следующий фрагмент документа Mathcad (рис. 6.4) показывает, что локальная переменная отличается от глобальной переменной с тем же самым именем.

Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru

  Рис. 6.4

При написания следующего программного блока используются как локальные, так и глобальные переменные.

Пример 6.2. Найти значение выражения Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru при Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru и Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru . Программный блок, вычисляющий данное значение, приведен на рис. 6.5.

Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru
  Рис. 6.5

Программный блок используется (это его основное предназначение) для написания собственно разработанных пользователем функций. В этом случае переменные, которые используются внутри программного блока, могут быть либо локальными, либо глобальными, либо параметрами функций. Параметры функций существуют только во время выполнения программного блока, где их значения можно изменять. Параметры функций могут совпадать с названиями глобальных переменных, при этом это различные переменные.

Пример 6.3. Вычислить значение функции Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru при Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru , Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru и Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru . Программный блок данной задачи приведен на рис. 6.6.

Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru

Рис. 6.6

Инструкции if и otherwise используются для написания условных операторов. Инструкция if (если) имеет следующую маску ввода Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru , где справа от инструкции if пишется условие (булевское выражение), при выполнении которого выполняются операторы, стоящие слева от инструкции if. Инструкция otherwise (иначе, в противном случае) имеет следующую маску ввода Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru и всегда пишется после последовательно идущих инструкций if. Слева от инструкции otherwise пишутся операторы, которые выполняются тогда, и только тогда, когда условия всех непосредственно идущих инструкций if перед инструкцией otherwise не выполняются.

Булевские выражения пишутся с помощью булевских операторов, расположенных на палитре компонент Boolean, которую можно вызвать щелчком мыши на кнопке Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru палитры компонент Math, либо выбрать пункт главного меню ViewToolbarsBoolean.

Палитра булевских компонент приведена на рис. 6.7.

Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru
  Рис. 6.7

Назначение булевских операций следующее:

Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru – равенство двух выражений;

Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru – знак меньше;

Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru – знак больше;

Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru – знак меньше, либо равно

Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru – знак больше, либо равно;

Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru – знак неравенства двух выражений;

Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru – отрицание логического выражения;

Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru – конъюнкция (операция И) логических выражений;

Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru – дизъюнкция (не исключающее ИЛИ) логических выражений (принимает значение ИСТИНА, если хотя бы одно из высказываний ИСТИНА, в противном случае принимает значение ЛОЖЬ);

Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru – операция исключающего ИЛИ над логическими выражениями: принимает значение ИСТИНА, когда одно из высказываний принимает значение ИСТИНА, а другое высказывание принимает значение ЛОЖЬ, и принимает значение ЛОЖЬ, когда оба высказывания одновременно принимают значение либо ИСТИНА, либо ЛОЖЬ.

Пример 6.4. Вычислить значение функции

Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru при Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru и Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru .

Данная задача решена двумя различными способами (рис. 6.8 и рис. 6.9), однако программный код на рис. 6.9 считается более грамотным.

Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru
  Рис. 6.8   Рис. 6.9

Пример 6.5. Вычислить значение функции

Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru при Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru , Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru и Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru .

Решение данной задачи приведено на рис. 6.10.

Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru
  Рис. 6.10

Пример 6.6. Вычислить значение функции

Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru

при Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru и Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru , Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru и Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru , Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru и Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru .

Решение данной задачи приведено на рис. 6.11 и рис. 6.12, однако программный блок на рис. 6.12 считается более грамотным.

Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru
Рис. 6.11 Рис. 6.12

К инструкциям цикла относят инструкцию for и инструкцию while.

Инструкция for (цикл с заданным числом повторений) имеет следующую маску ввода:

Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru

Более подробно: маска ввода инструкции for имеет следующий вид:

for iÎBegin, Next .. End

<операторы>

Здесь переменная i, которая называется параметром цикла for, последовательно принимает значение с одним и тем же шагом: сначала значение Begin, потом значение Next, и так далее, пока значение i будет не больше значения End. При каждом значении i выполняются операторы, написанные ниже инструкции for. Если параметр Next инструкции for не указан, то шаг цикла равен 1. Напомним, чтобы набрать двоеточие (..) в инструкции for, надо нажать клавишу; (точка с запятой).

Пример 6.7. Функция f, зависящая от трех параметров Begin, End и h, находит сумму квадратов всех чисел от Begin до End с шагом h. Решение задачи приведено на рис. 6.13.

Инструкции можно вкладывать друг в друга (если это возможно).

Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru
Рис. 6.13
 

Пример 6.8. Параметром функции f является матрица A. Результатом функции f является вектор-столбец, состоящий из 3 координат: первая – минимальное значение матрицы A, вторая и третья – номер строки и номер столбца матрицы A, в которых находится минимальный элемент матрицы A (если матрица A обладает несколькими минимальными элементами, то номер строки и номер столбца матрицы A, в которых находится минимальный элемент матрицы, выбирается произвольным образом). Решение задачи приведено на рис. 6.14.

Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru
Рис. 6.14

В этом примере инструкция for, в которую вложена инструкция if, является вложенной в инструкцию for. При этом при выполнении условия в инструкции if выполняются три оператора. Для набора таких операторов надо выделить ячейку ввода, стоящую слева от инструкции if и выбрать инструкцию Add Line. Также при написании программного блока использовались две функции rows(A) и cols(A), которые соответственно вычисляют количество строк и столбцов матрицы A.

Инструкция while (цикл с предусловием) имеет следующую маску ввода:

Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru .

Справа от инструкции while пишется условие, снизу инструкции while пишется набор операторов. Инструкция while «работает» по следующему алгоритму:

1. Проверяется условие. Если условие верно, то переходим к пункту 2, если условие не верно, то переходим к пункту 4.

2. Выполняется набор операторов.

3. Переходим к пункту 1.

4. Конец выполнения инструкции while.

Пример 6.9. Функция f, зависящая от двух параметров Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru и Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru , вычисляет значение следующего выражения

Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru ,

где число Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru выбирается таким, что Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru , а Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru . Решение задачи приведено на рис. 6.15.

Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru
  Рис. 6.15

Инструкция break вызывает прерывание (прекращение) выполнения цикла (for или while), внутри которого она находится. Если инструкция break не находится внутри цикла, то она вызывает прекращение выполнения программного блока.

Пример 6.10. Параметром функции f является матрица A. Результатом функции f является вектор-столбец, i-ый элемент которого содержит номер первого столбца строки i матрицы A, в котором содержится нулевой элемент матрицы A; если i-ая строка матрицы A не содержит нулевого элемента, то i-ый элемент полученного вектор-столбца равен Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru . Решение задачи приведено на рис. 6.16.

Инструкция continue обеспечивает досрочное завершение очередного прохода цикла; эквивалент передачи управления в самый конец циклического оператора. А именно, если инструкция continue находится в инструкции while, то после выполнения инструкции continue цикл while начинает выполняться заново, т. е. с проверки условия; если инструкция continue находится в инструкции for, то после выполнения инструкции continue параметр цикла увеличивается на свой шаг.

Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru
  Рис. 6.16

Инструкцию continue можно использовать, например, вместо инструкции otherwise с вложенной в нее инструкцией if.

Пример 6.11. Параметром функции minmax является матрица A. Результатом выполнения функции minmax является вектор-столбец размерности 2, первый элемент которого равен минимальному элементу матрицы A, а второй – максимальному. Решение задачи приведено на рис. 6.17 с инструкцией otherwise и на рис. 6.18 с инструкцией continue.

Инструкция return прерывает выполнение программного блока и выводит значение выражения, стоящего справа от инструкции return. Маска инструкции return имеет следующий вид Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru .

Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru
Рис. 6.17 Рис. 6.18

Пример 6.12. Параметром функции f является матрица A. Результатом функции f является вектор-столбец, содержащий номер строки и номер столбца матрицы A, в которых находится первый нулевой элемент матрицы. Элементы матрицы идут в следующем порядке: слева верхнего угла матрицы по строчкам вниз. Если матрица A не содержит элемента, равного 0, то функция f выводит вектор-столбец с двумя координатами –1. Решение задачи приведено на рис. 6.19.

Инструкция on error позволяет создавать процедуры обработки ошибок. Эта инструкция задается в виде:

Выражение_1 on error Выражение_2

Если при выполнении Выражение_2 возникает ошибка, то выполняется Выражение_1.

Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru
  Рис. 6.19

Пример 6.13. Написать программу, которая вычисляет значение следующей функции

Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru

Решение приведено на рис. 6.20.

Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru

Рис. 6.20

Для обработки ошибок полезна также функция error(S), которая, будучи помещенной в программный блок, при возникновении ошибки выводит всплывающую подсказку с сообщением, хранящемся в символьной строке S.

Пример 6.14. Написать функцию, которая вычисляет значение функции Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru при Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru , а при Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru выдает всплывающую подсказку “Division by zero”. Решение приведено на рис. 6.21.

Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru

Рис. 6.21

Разработанные пользователем функции обладают тем свойством, что внутри функций можно вызывать как встроенные в Mathcad функции, так и функции, написанные пользователем раньше в этом документе Mathcad.

Пример 6.15. Написать программу, которая вычисляет функцию

Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru ,

где Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru . Решение приведено на рис. 6.22.

Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru
  Рис. 6.22

Порядок выполнения работы

Студенту рекомендуется изучить внимательно теоретический материал, проделать все примеры, в нем встречающиеся, и после этого приступать к выполнению своего варианта задания.

Содержание отчета

1. Краткий обзор по теоретической части.

2. Файл MathCAD с выполненными заданиями своего варианта.

Варианты заданий

Вариант 1

1. Составьте функцию, которая будет менять местами 2 строки матрицы.

2. Используя встроенную функцию error вычислите значение функции Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru , либо выведите всплывающую подсказку «Division by zero».

3. Напишите функцию, которая возвращает значение Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru , если аргумент функции есть число отрицательное; значение 0, если аргумент функции равен 0; значение 1, если аргумент функции есть число положительное.

Вариант 2

1. Составьте функцию, которая будет выводить сумму конечной геометрической прогрессии, при следующих значениях аргументов: Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru – первый член геометрической прогрессии, Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru – количество членов прогрессии, Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru – знаменатель геометрической прогрессии.

2. Напишите функцию, которая возвращает квадратную матрицу размерности Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru , на побочной диагонали которой стояли бы 1, а все остальные элементы матрицы равнялись бы 0.

3. Вычислите значение функции Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru

Вариант 3

1. Напишите функцию, которая вычисляет сумму чисел Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru , где Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru – натуральное число.

2. Для числа Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru , изменяющегося от –2 до 2 с шагом Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru вычислите значение функции Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru .

3. Составьте функцию для вычисления длины вектора.

Вариант 4

1. Напишите функцию pr(n), которая вычисляет произведение чисел Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru , где Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru – натуральное число, без использования оператора – факториал.

2. Создайте функцию для вычисления корней многочлена Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru .

3. Используя оператор on error вычислите функцию, которая равняется Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru при Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru и 1 при Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru .

Вариант 5

1. Создайте функцию для вычисления корней квадратного многочлена Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru .

2. Напишите функцию, вычисляющее значение выражения Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru , которое зависит от действительного числа Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru и натурального числа Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru .

3. Напишите функцию, которая возвращает знак «+», если значение Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru и знак «–», если значение Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru .

Вариант 6

1. Напишите функцию, которая будет выводить единичную (квадратную) матрицу. Аргументом функции является размерность матрицы.

2. Вычислите значение Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru , используя итерационную формулу

Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru , Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru , Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru .

В качестве приближенного значения квадратного корня берется такое значение Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru , которое удовлетворяет условию Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru , где Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru – заданная точность вычисления. Аргументами функции являются числа Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru и Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru .

3. Используя Вами разработанную функцию, вычислите Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru , где Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru изменяется от 0 до 10 с шагом 1.

Вариант 7

1. Составьте функцию, которая будет выводить сумму арифметической прогрессии при заданных значениях: Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru – первый член арифметической прогрессии, Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru – количество членов арифметической прогрессии, Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru – разность арифметической прогрессии.

2. Составьте программу для вычисления функции Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru по формуле

Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru

3. Напишите программу, которая выводит абсолютное значение функции Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru .

Вариант 8

1. Определите функцию, которая равна 1, если ее аргумент есть четное число, либо размещен между четным и нечетным числом, и 0 в противном случае.

2. Вычислите сумму бесконечной геометрической прогрессии с первым членом Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru и знаменателем Цель работы: Изучить вычислительные возможности пакета MathCAD для решения нелинейных уравнений и систем, и оптимизационных задач. - student2.ru .

Наши рекомендации