Краткие теоретические сведения. Момент инерции маятника в данной работе определяется из основного уравнения динамики вращательного движения твердого тела

Момент инерции маятника в данной работе определяется из основного уравнения динамики вращательного движения твердого тела. Динамическими характеристиками вращательного движения тела являются: момент инерциитела относительно оси, момент силыотносительно оси, момент импульсатела относительно оси вращения.

Момент инерции тела относительно оси

Пусть имеется твердое тело. Выберем некоторую прямую ОО (рис.2.1), которую будем называть осью (прямая ОО может быть и вне тела).

Краткие теоретические сведения. Момент инерции маятника в данной работе определяется из основного уравнения динамики вращательного движения твердого тела - student2.ru

Разобьем тело на элементарные участки (материальные точки) массами Краткие теоретические сведения. Момент инерции маятника в данной работе определяется из основного уравнения динамики вращательного движения твердого тела - student2.ru Краткие теоретические сведения. Момент инерции маятника в данной работе определяется из основного уравнения динамики вращательного движения твердого тела - student2.ru m Краткие теоретические сведения. Момент инерции маятника в данной работе определяется из основного уравнения динамики вращательного движения твердого тела - student2.ru , Краткие теоретические сведения. Момент инерции маятника в данной работе определяется из основного уравнения динамики вращательного движения твердого тела - student2.ru m Краткие теоретические сведения. Момент инерции маятника в данной работе определяется из основного уравнения динамики вращательного движения твердого тела - student2.ru ,..., Краткие теоретические сведения. Момент инерции маятника в данной работе определяется из основного уравнения динамики вращательного движения твердого тела - student2.ru m Краткие теоретические сведения. Момент инерции маятника в данной работе определяется из основного уравнения динамики вращательного движения твердого тела - student2.ru , находящиеся от оси на расстоянии соответственно r Краткие теоретические сведения. Момент инерции маятника в данной работе определяется из основного уравнения динамики вращательного движения твердого тела - student2.ru , r Краткие теоретические сведения. Момент инерции маятника в данной работе определяется из основного уравнения динамики вращательного движения твердого тела - student2.ru ,... r Краткие теоретические сведения. Момент инерции маятника в данной работе определяется из основного уравнения динамики вращательного движения твердого тела - student2.ru ,... . Моментом инерции материальной точки относительно оси (OO) называется произведение массы материальной точки на квадрат ее расстояния до этой оси:

DIi = Dmi Краткие теоретические сведения. Момент инерции маятника в данной работе определяется из основного уравнения динамики вращательного движения твердого тела - student2.ru ri2. (2.1)

Моментом инерции (МИ) тела относительно оси (ОО) называется сумма произведений масс элементарных участков тела на квадрат их расстояния до оси:

Краткие теоретические сведения. Момент инерции маятника в данной работе определяется из основного уравнения динамики вращательного движения твердого тела - student2.ru I =Краткие теоретические сведения. Момент инерции маятника в данной работе определяется из основного уравнения динамики вращательного движения твердого тела - student2.ru Краткие теоретические сведения. Момент инерции маятника в данной работе определяется из основного уравнения динамики вращательного движения твердого тела - student2.ru .(2.2)

Как видно, момент инерции тела есть величина аддитивная - момент инерции всего тел относительно некоторой оси равен сумме моментов инерции отдельных его частей относительно той же оси.

В данном случае Краткие теоретические сведения. Момент инерции маятника в данной работе определяется из основного уравнения динамики вращательного движения твердого тела - student2.ru = Краткие теоретические сведения. Момент инерции маятника в данной работе определяется из основного уравнения динамики вращательного движения твердого тела - student2.ru . Измеряется момент инерции в кг×м Краткие теоретические сведения. Момент инерции маятника в данной работе определяется из основного уравнения динамики вращательного движения твердого тела - student2.ru .

Так как

Dmi = r DVi (2.3)

где r - плотность вещества; DV Краткие теоретические сведения. Момент инерции маятника в данной работе определяется из основного уравнения динамики вращательного движения твердого тела - student2.ru - объем - i - го участка, то

I = Краткие теоретические сведения. Момент инерции маятника в данной работе определяется из основного уравнения динамики вращательного движения твердого тела - student2.ru Краткие теоретические сведения. Момент инерции маятника в данной работе определяется из основного уравнения динамики вращательного движения твердого тела - student2.ru

или, переходя к бесконечно малым элементам,

I= Краткие теоретические сведения. Момент инерции маятника в данной работе определяется из основного уравнения динамики вращательного движения твердого тела - student2.ru Краткие теоретические сведения. Момент инерции маятника в данной работе определяется из основного уравнения динамики вращательного движения твердого тела - student2.ru(2.4)

Формулу (2.4) удобно использовать для вычисления МИ однородных тел правильной формы относительно оси симметрии, проходящей через центр масс тела. Например, для МИ цилиндра относительно оси, проходящей через центр масс и параллельно образующей цилиндра, эта формула дает

Краткие теоретические сведения. Момент инерции маятника в данной работе определяется из основного уравнения динамики вращательного движения твердого тела - student2.ru ,

где m - масса; R - радиус цилиндра.

Большую помощь при вычисления МИ тел относительно некоторых осей оказываеттеорема Штейнера: МИ тела I относительно любой оси равен сумме МИ этого тела Iс относительно оси, проходящей через центр масс тела и параллельно данной, и произведения массы тела на квадрат расстояния d между указанными осями:

I = Iс+ m d2.(2.5)

Момент силы относительно оси

Краткие теоретические сведения. Момент инерции маятника в данной работе определяется из основного уравнения динамики вращательного движения твердого тела - student2.ru

Пусть на тело действует сила Краткие теоретические сведения. Момент инерции маятника в данной работе определяется из основного уравнения динамики вращательного движения твердого тела - student2.ru . Примем для простоты, что сила Краткие теоретические сведения. Момент инерции маятника в данной работе определяется из основного уравнения динамики вращательного движения твердого тела - student2.ru лежит в плоскости, Краткие теоретические сведения. Момент инерции маятника в данной работе определяется из основного уравнения динамики вращательного движения твердого тела - student2.ru перпендикулярной некоторой прямой ОО (рис. 2.2,a), которую назовем осью (например, это ось вращения тела). На рис. 2.2,a, А - точка приложения силы Краткие теоретические сведения. Момент инерции маятника в данной работе определяется из основного уравнения динамики вращательного движения твердого тела - student2.ru , О¢ - точка пересечения оси с плоскостью, в которой лежит сила; Краткие теоретические сведения. Момент инерции маятника в данной работе определяется из основного уравнения динамики вращательного движения твердого тела - student2.ru - радиус-вектор, определяющий положение точки А относительно точки О¢; О¢B = b - плечо силы. Плечом силы относительно оси называется расстояние от оси до линии, вдоль которой действует сила; a - угол между векторами Краткие теоретические сведения. Момент инерции маятника в данной работе определяется из основного уравнения динамики вращательного движения твердого тела - student2.ru и Краткие теоретические сведения. Момент инерции маятника в данной работе определяется из основного уравнения динамики вращательного движения твердого тела - student2.ru .

Моментом силы Краткие теоретические сведения. Момент инерции маятника в данной работе определяется из основного уравнения динамики вращательного движения твердого тела - student2.ru относительно оси ОО называется вектор, определяемый равенством

Краткие теоретические сведения. Момент инерции маятника в данной работе определяется из основного уравнения динамики вращательного движения твердого тела - student2.ru Краткие теоретические сведения. Момент инерции маятника в данной работе определяется из основного уравнения динамики вращательного движения твердого тела - student2.ru (2.6)

Модуль этого вектора M = F Краткие теоретические сведения. Момент инерции маятника в данной работе определяется из основного уравнения динамики вращательного движения твердого тела - student2.ru r Краткие теоретические сведения. Момент инерции маятника в данной работе определяется из основного уравнения динамики вращательного движения твердого тела - student2.ru Sin a = Fb. Иногда поэтому говорят, чтомомент силы относительно оси - это произведение силы на ее плечо.

Если сила Краткие теоретические сведения. Момент инерции маятника в данной работе определяется из основного уравнения динамики вращательного движения твердого тела - student2.ru направлена произвольно, то ее можно разложить на две составляющие: Краткие теоретические сведения. Момент инерции маятника в данной работе определяется из основного уравнения динамики вращательного движения твердого тела - student2.ru и Краткие теоретические сведения. Момент инерции маятника в данной работе определяется из основного уравнения динамики вращательного движения твердого тела - student2.ru (рис. 2.2,б), т.е., Краткие теоретические сведения. Момент инерции маятника в данной работе определяется из основного уравнения динамики вращательного движения твердого тела - student2.ru , где Краткие теоретические сведения. Момент инерции маятника в данной работе определяется из основного уравнения динамики вращательного движения твердого тела - student2.ru Краткие теоретические сведения. Момент инерции маятника в данной работе определяется из основного уравнения динамики вращательного движения твердого тела - student2.ru - составляющая, направленная параллельно оси ОO, а Краткие теоретические сведения. Момент инерции маятника в данной работе определяется из основного уравнения динамики вращательного движения твердого тела - student2.ru лежит в плоскости, перпендикулярной оси. В этом случае под моментом силы Краткие теоретические сведения. Момент инерции маятника в данной работе определяется из основного уравнения динамики вращательного движения твердого тела - student2.ru относительно оси ОО понимают вектор

Краткие теоретические сведения. Момент инерции маятника в данной работе определяется из основного уравнения динамики вращательного движения твердого тела - student2.ru . (2.7)

В соответствии с выражениями (2.6) и (2.7) вектор Краткие теоретические сведения. Момент инерции маятника в данной работе определяется из основного уравнения динамики вращательного движения твердого тела - student2.ru направлен вдоль оси (cм. рис.2.2, а).

Момент импульса тела относительно оси вращения

Пусть тело вращается вокруг некоторой оси ОО с угловой скоростью w. Разобьем это тело мысленно на элементарные участки с массами Dm1, Dm2,...Dmi,..., которые находятся от оси соответственно на расстояниях Dr1, Dr2,..., Dr3, ..., Краткие теоретические сведения. Момент инерции маятника в данной работе определяется из основного уравнения динамики вращательного движения твердого тела - student2.ru и вращаются по окружностям, имея линейные скорости v1, v2, ..., vi, ... Известно, что величина, равная Краткие теоретические сведения. Момент инерции маятника в данной работе определяется из основного уравнения динамики вращательного движения твердого тела - student2.ru - есть импульс i- го участка. Моментом импульса i- го участка (материальной точки) относительно оси вращения называется вектор (точнее, псевдовектор)

Краткие теоретические сведения. Момент инерции маятника в данной работе определяется из основного уравнения динамики вращательного движения твердого тела - student2.ru , (2.8)

где Краткие теоретические сведения. Момент инерции маятника в данной работе определяется из основного уравнения динамики вращательного движения твердого тела - student2.ru - радиус-вектор, определяющий положение i-го участка относительно оси.

Моментом импульса всего тела относительно оси вращения называют вектор: Краткие теоретические сведения. Момент инерции маятника в данной работе определяется из основного уравнения динамики вращательного движения твердого тела - student2.ru

       
  Краткие теоретические сведения. Момент инерции маятника в данной работе определяется из основного уравнения динамики вращательного движения твердого тела - student2.ru
 
    Краткие теоретические сведения. Момент инерции маятника в данной работе определяется из основного уравнения динамики вращательного движения твердого тела - student2.ru


Краткие теоретические сведения. Момент инерции маятника в данной работе определяется из основного уравнения динамики вращательного движения твердого тела - student2.ru , (2.9)

модуль которого Краткие теоретические сведения. Момент инерции маятника в данной работе определяется из основного уравнения динамики вращательного движения твердого тела - student2.ru .

В соответствии с выражениями (2.8) и (2.9) векторы Краткие теоретические сведения. Момент инерции маятника в данной работе определяется из основного уравнения динамики вращательного движения твердого тела - student2.ru и Краткие теоретические сведения. Момент инерции маятника в данной работе определяется из основного уравнения динамики вращательного движения твердого тела - student2.ru направлены по оси вращения (рис.2.3). Легко показать, что момент импульса тела Краткие теоретические сведения. Момент инерции маятника в данной работе определяется из основного уравнения динамики вращательного движения твердого тела - student2.ruотносительно оси вращения и момент инерцииI этого тела относительно той же оси связаны соотношением

Краткие теоретические сведения. Момент инерции маятника в данной работе определяется из основного уравнения динамики вращательного движения твердого тела - student2.ru .(2.10)

Наши рекомендации