Раздел 4. электромагнетизм. электромагнитные колебания и волны

Основные формулы

1. Закон Био – Савара – Лапласа (в вакууме)

dH = (I sin α dl)/(4πr2 ),

где dH – напряженность магнитного поля, созданного элементом контура dl, по которому течет ток I, в некоторой точке А; α – угол между радиусом-вектором и элементом тока dl; r – расстояние от элемента контура тока Idl до точки А.

2. Напряженность магнитного поля в центре кругового тока (в вакууме)

H = I/(2R),

где R – радиус кругового контура с током.

3. Напряженность магнитного поля, созданного бесконечно длинным прямолинейным проводником (в вакууме)

H = I/(2πa),

где а – расстояние от точки, где определяется напряженность, до проводника с током.

4. Напряженность магнитного поля на оси кругового тока (в вакууме)

H = (R2I)/2(R2+a2)3/2,

где R – радиус кругового витка с током; а – расстояние от точки, в которой определяется напряженность магнитного поля, до центра кругового тока.

5. Напряженность магнитного поля внутри тороида и бесконечно длинного соленоида

H = I n,

где n – число витков на единицу длины соленоида (тороида).

6. Напряженность магнитного поля на оси соленоида конечной длины

H = I n (cos α1 – cos α2) /2,

где α1 и α2 – углы между осью соленоида и радиусом-вектором, проведенным из рассматриваемой точки к концам соленоида.

7. Связь магнитной индукции с напряженностью магнитного поля

раздел 4. электромагнетизм. электромагнитные колебания и волны - student2.ru = μ0 μ раздел 4. электромагнетизм. электромагнитные колебания и волны - student2.ru ,

где μ – магнитная проницаемость среды; μ0 = 4π × 10-7 Гн/м – магнитная постоянная.

8. Сила Ампера

FА = I В l sin a ,

где FА – сила, действующая на проводник с током в магнитном поле; I – сила тока в проводнике; B – индукция магнитного поля; l – длина проводника; a – угол между направлением тока и вектором магнитной индукции.

9. Сила взаимодействия двух параллельных проводников с током
некоторой длины L

F = (μ0 μ I1 I2 L)/(2π d),

где L – длина проводников; d – расстояние между ними.

10. Сила Лоренца

Fл = q B V sin a,

где Fл – сила, действующая на заряд, движущийся в магнитном поле со скоростью V; q – модуль электрического заряда; В – индукция магнитного поля; a – угол между вектором скорости заряда и вектором магнитной индукции.

11. Поток магнитной индукции (магнитный поток) сквозь плоский контур при В= const

Ф = B S cos a,

где В – индукция магнитного поля; S – площадь контура, пересекаемого линиями магнитного поля; a – угол между вектором магнитной индукции и нормалью к плоскости контура.

12. Работа перемещения проводника с током в магнитном поле

dA = I dФ,

где dФ – поток магнитной индукции, пересеченный проводником при его движении.

13. Закон электромагнитной индукции Фарадея

<ε> = -DФ/Dt,

где ε – электродвижущая сила, возникающая в контуре при изменении потока магнитной индукции; DФ – величина изменения магнитного потока; Dt – время, в течение которого произошло это изменение.

14. ЭДС самоиндукции

<ε> = -L (DI/Dt),

где L – индуктивность (коэффициент самоиндукции); DI – изменение силы тока в контуре, происшедшее за время Dt.

15. Индуктивность соленоида

L = μ0 μ n2 l S,

где n – число витков на единицу длины соленоида l; S – площадь его поперечного сечения.

16. Энергия магнитного поля контура с током

W = L I2/2,

где L – индуктивность контура; I – сила тока в контуре.

Плотность энергии магнитного поля

w= B2/2µµ0 =BH/2,

где B – величина индукции магнитного поля; Н– величина напряженности магнитного поля.

17. Период электромагнитных колебаний в контуре

раздел 4. электромагнетизм. электромагнитные колебания и волны - student2.ru ,

где L – индуктивность контура; C – емкость; R – сопротивление.

При малом сопротивлении контура (формула Томсона)

раздел 4. электромагнетизм. электромагнитные колебания и волны - student2.ru

18. Разность потенциалов на обкладках конденсатора в контуре при R ≠ 0

раздел 4. электромагнетизм. электромагнитные колебания и волны - student2.ru

где (δ = R/2L) – коэффициент затухания.

Если δ = 0, то колебания разности потенциалов будут незатухающими:

U = U0 cos ωt.

19. Закон Ома для переменного тока

Iэф = Uэф/Z,

где Iэф и Uэф – эффективные значения силы тока и напряжения, связанные с их амплитудными значениями I0 и U0 следующими соотношениями:

раздел 4. электромагнетизм. электромагнитные колебания и волны - student2.ru раздел 4. электромагнетизм. электромагнитные колебания и волны - student2.ru

Z – полное сопротивление цепи.

Если цепь содержит активное сопротивление R, емкость С и индуктивность L, соединенные последовательно, то

раздел 4. электромагнетизм. электромагнитные колебания и волны - student2.ru

При этом сдвиг фаз между напряжением и силой тока определяется формулой

раздел 4. электромагнетизм. электромагнитные колебания и волны - student2.ru

20. Мощность переменного тока

P = Iэф Uэф cos φ,

где j – сдвиг фаз.

Примеры решения задач

Пример 1. По контуру, изображенному на схеме, идет ток силой 10 А. Определить магнитную индукцию в точке О, если радиус дуги R = 10 см, α = 60.

раздел 4. электромагнетизм. электромагнитные колебания и волны - student2.ru Решение.В силу принципа суперпозиции магнитных полей магнитная индукция раздел 4. электромагнетизм. электромагнитные колебания и волны - student2.ru в точке О равна векторной сумме магнитных индукций, созданных всеми элементами контура с током. Разобьем весь контур на три участка – дугу АВ и прямоугольные отрезки ВС, СА, чтобы для вычисления их магнитных полей можно было воспользоваться формулами для определения магнитной индукции в произвольной точке А поля, созданного прямолинейным проводником с током I (формула (1)), и для определения магнитной индукции в центре дуги окружности длиной L и радиусом R, обтекаемой током I (формула (2)).

раздел 4. электромагнетизм. электромагнитные колебания и волны - student2.ru (1)

раздел 4. электромагнетизм. электромагнитные колебания и волны - student2.ru (2)

Здесь а – расстояние от точки А до проводника; φ1 и φ2 – углы, образованные радиусом-вектором, проведенным в точку А соответственно из начала и конца проводника.

Тогда получим

раздел 4. электромагнетизм. электромагнитные колебания и волны - student2.ru (3)

Сначала вычислим модули всех трех слагаемых. Поскольку угол α = 60, дуга АВ составляет 1/6 часть окружности, т. е. L = 2πR/6=πR/3. Подставив это значение в формулу (2), найдем

раздел 4. электромагнетизм. электромагнитные колебания и волны - student2.ru (4)

Далее по формуле (1) определим величину ВВС. На схеме видно, что углы, входящие в эту формулу, φ1= 30, φ2= 90. Расстояние от точки О до провода ВС есть а = ОС = R sin φ = R/2. Подставив значения а, φ1, φ2 в формулу (1), имеем

раздел 4. электромагнетизм. электромагнитные колебания и волны - student2.ru (5)

Обратимся к уравнению, выражающему в скалярной форме закон Био –Савара – Лапласа, с помощью которого выведена формула (1).

раздел 4. электромагнетизм. электромагнитные колебания и волны - student2.ru раздел 4. электромагнетизм. электромагнитные колебания и волны - student2.ru (6)

Для любого элемента dl проводника СА угол, образованный этим элементом (взятый по направлению тока) и радиусом-вектором раздел 4. электромагнетизм. электромагнитные колебания и волны - student2.ru , проведенным от элемента в точку О, равен π. Следовательно, sin(dl,r) = 0. Однако при этом знаменатель формулы (6) отличен от нуля. Таким образом, dB = 0 для любого элемента проводника СА. Отсюда ясно, что и весь проводник СА не создает в точке О магнитного поля. Тогда соотношение (3) упростится:

раздел 4. электромагнетизм. электромагнитные колебания и волны - student2.ru (7)

Поскольку точка О и контур АВС лежат в одной плоскости, оба вектора раздел 4. электромагнетизм. электромагнитные колебания и волны - student2.ru АВ, раздел 4. электромагнетизм. электромагнитные колебания и волны - student2.ru ВС, будучи перпендикулярными этой плоскости, оказываются расположенными вдоль одной прямой – нормали к плоскости чертежа, проходящей через точку О. При этом, согласно правилу правого винта, вектор раздел 4. электромагнетизм. электромагнитные колебания и волны - student2.ru АВ направлен от наблюдателя, вектор раздел 4. электромагнетизм. электромагнитные колебания и волны - student2.ru ВС – к наблюдателю. Приняв одно из этих направлений (например второе) за положительное, можно вместо (7) написать скалярное равенство

В = ВВС – ВАВ

или, с учетом (4) и (5),

раздел 4. электромагнетизм. электромагнитные колебания и волны - student2.ru

Подставив в эту формулу величины, выраженные в единицах СИ: I = 10 A, R = 0.1 Ом, μ0 = 4π × 10–7 Гн/м, и произведя вычисления, получим В = 6,9 мкТ.

Пример 2. По двум длинным параллельным проводам текут в противоположных направлениях токи силой I1 = I2 = I =10 А. Расстояние между проводами а = 0.3 м. Определить магнитную индукцию в точке А, удаленной от первого и второго проводов соответственно на расстояния а1=0.15 м, а2 = 0.2 м.

раздел 4. электромагнетизм. электромагнитные колебания и волны - student2.ru Решение. Согласно принципу суперпозиции полей магнитная индукция в точке А равна векторной сумме магнитных индукций, созданных каждым током в отдельности:

раздел 4. электромагнетизм. электромагнитные колебания и волны - student2.ru

Однако здесь, в отличие от предыдущей задачи, точка А, в которой надо определить поле, и оба параллельных провода не лежат в одной плоскости. Поэтому векторы раздел 4. электромагнетизм. электромагнитные колебания и волны - student2.ru , раздел 4. электромагнетизм. электромагнитные колебания и волны - student2.ru не коллинеарны. Пусть они образуют угол α. Тогда модуль вектора В на основании теоремы косинусов

раздел 4. электромагнетизм. электромагнитные колебания и волны - student2.ru (1)

Величины В1 и В2 можно найти по формуле для определения магнитной индукции в произвольной точке А поля, созданного прямолинейным проводником с током I:

раздел 4. электромагнетизм. электромагнитные колебания и волны - student2.ru , (2)

где φ1, φ2 – углы, образованные радиусом-вектором, проведенным в точку А соответственно из начала и конца проводника, с направлением тока.

Так как в условии задачи речь идет о длинных проводниках, то ясно, что точка А удалена от концов каждого провода на значительно большее расстояние, чем от самого провода. При этом φ1= 0, а φ2 = π. Тогда получим

раздел 4. электромагнетизм. электромагнитные колебания и волны - student2.ru (3)

Чтобы определить cos α, входящий в формулу (1), учтем, что каждый из векторов раздел 4. электромагнетизм. электромагнитные колебания и волны - student2.ru , раздел 4. электромагнетизм. электромагнитные колебания и волны - student2.ru лежит в плоскости, перпендикулярной соответствующему проводнику с током. Поэтому на схеме, выполненной в плоскости, содержащей векторы раздел 4. электромагнетизм. электромагнитные колебания и волны - student2.ru , раздел 4. электромагнетизм. электромагнитные колебания и волны - student2.ru , оба проводника проектируются в точки. В соответствии с принятым обозначением ток I1 показан направленным от наблюдателя, ток I2 – к наблюдателю. Векторы раздел 4. электромагнетизм. электромагнитные колебания и волны - student2.ru , раздел 4. электромагнетизм. электромагнитные колебания и волны - student2.ru изображены на схеме так, что их направление связано с направлением соответствующих токов правилом правого винта.

Пусть угол между отрезками а1, а2 равен β. Поскольку каждый из векторов раздел 4. электромагнетизм. электромагнитные колебания и волны - student2.ru , раздел 4. электромагнетизм. электромагнитные колебания и волны - student2.ru перпендикулярен соответствующему отрезку, должно выполняться равенство

α + β = π (4)

По теореме косинусов имеем

раздел 4. электромагнетизм. электромагнитные колебания и волны - student2.ru (5)

Из соотношений (4) и (5) следует

раздел 4. электромагнетизм. электромагнитные колебания и волны - student2.ru (6)

Подставив в (1) значения В1, В2, oпределяемые по формуле (3), а также cos α из (6), найдем

раздел 4. электромагнетизм. электромагнитные колебания и волны - student2.ru

Подставив числовые значения величин (все они даны в СИ) и произведя вычисление, получим ответ:

раздел 4. электромагнетизм. электромагнитные колебания и волны - student2.ru мкТл.

Пример 3. В однородном магнитном поле с индукцией 10 × 10–2 Тл расположена прямоугольная рамка аbc, подвижная сторона которой ad длиной 0,1 м перемещается со скоростью 25 м/с перпендикулярно линиям индукции поля. Определить ЭДС индукции, возникающую в контуре аbcd.

Решение.Задачу можно решить двумя способами, применяя закон Фарадея для электромагнитной индукции или рассматривая силы, действующие на свободные электроны в движущейся проволоке (силы Лоренца).

1. При движении проводника аd площадь рамки увеличивается, магнитный поток Ф сквозь рамку возрастает, а значит, согласно закону Фарадея

раздел 4. электромагнетизм. электромагнитные колебания и волны - student2.ru (1)

в рамке должна при этом действовать ЭДС индукции. Чтобы ее найти, сначала выразим магнитный поток Ф через индукцию поля В и стороны рамки L, x.

раздел 4. электромагнетизм. электромагнитные колебания и волны - student2.ru Согласно формуле для определения потока вектора магнитной индукции сквозь поверхность S имеем

Ф = ВS = BLx.

Подставив это значение Ф в (1) и учитывая, что В, L – величины постоянные, запишем

раздел 4. электромагнетизм. электромагнитные колебания и волны - student2.ru раздел 4. электромагнетизм. электромагнитные колебания и волны - student2.ru

где dx/dt = V – cкорость перемещения проводника ad. Поэтому

раздел 4. электромагнетизм. электромагнитные колебания и волны - student2.ru (2)

Сделав подстановку числовых значений величин B, L, V, получим ответ:

ε = –25 мВ.

Знак «минус» в формуле (2) показывает, что ЭДС индукции действует в контуре в таком направлении, при котором связанная с ним правилом правого винта нормаль к контуру противоположна вектору раздел 4. электромагнетизм. электромагнитные колебания и волны - student2.ru (т. е. направлена к наблюдателю на схеме). Значит, индукционный ток направлен в контуре против часовой стрелки.

2. Согласно определению,

раздел 4. электромагнетизм. электромагнитные колебания и волны - student2.ru , (3)

где q – величина заряда.

При движении в магнитном поле проводника ad вместе с ним движутся со скоростью V его свободные заряды (электроны). Поэтому на каждый из них действует сила Лоренца, выполняющая роль сторонней силы раздел 4. электромагнетизм. электромагнитные колебания и волны - student2.ru . Поскольку раздел 4. электромагнетизм. электромагнитные колебания и волны - student2.ru перпендикулярна раздел 4. электромагнетизм. электромагнитные колебания и волны - student2.ru , то сила Лоренца

F = qVB.

Так как она действует только вдоль участка ad длиной L, интеграл, стоящий в (3),

раздел 4. электромагнетизм. электромагнитные колебания и волны - student2.ru

Подставив это значение интеграла в формулу (3), получим

раздел 4. электромагнетизм. электромагнитные колебания и волны - student2.ru (4)

что совпадает (по абсолютному значению) с формулой (2).

Пример 4. На проволочный виток радиусом 0.1 м, помещенный между полюсами магнита, действует максимальный механический момент
0.65 × 10–5 Н × м. Сила тока в витке 2 А. Определить напряженность поля между полюсами магнита. Действием магнитного поля Земли пренебречь.

Решение.Напряженность Н магнитного поля можно определить из выражения механического момента М, действующего на виток с током в магнитном поле

раздел 4. электромагнетизм. электромагнитные колебания и волны - student2.ru (1)

где pm – магнитный момент витка с током; B – индукция магнитного поля;
α – угол между направлением напряженности магнитного поля и нормали к плоскости витка.

Если учесть, что максимальное значение механический момент принимает при sin α = 1 и магнитный момент витка с током имеет выражение

pm = I × S,

где S = π·R2 – площадь, то формула (1) примет вид

M = μ·μ0·ISH. (2)

Отсюда

раздел 4. электромагнетизм. электромагнитные колебания и волны - student2.ru (3)

Подставив в (3) числовые значения, получим

раздел 4. электромагнетизм. электромагнитные колебания и волны - student2.ru А/м.

Пример 5. Если сила тока, проходящего в некотором соленоиде, изменяется на 50 А в секунду, то на концах соленоида возникает ЭДС самоиндукции, равная 0.08 В. Определить по этим данным индуктивность соленоида.

Решение. Индуктивность имеет следующий физический смысл: она численно равна ЭДС самоиндукции, возникающей на концах соленоида в момент, когда ток, проходящий через соленоид, меняется на единицу силы тока в единицу времени. Математически это выражается известным законом Фарадея – Максвелла, примененным к ЭДС самоиндукции,

раздел 4. электромагнетизм. электромагнитные колебания и волны - student2.ru

Вынося постоянную величину L за знак дифференциала, получим

раздел 4. электромагнетизм. электромагнитные колебания и волны - student2.ru

Отсюда, опуская знак «минус», найдем

раздел 4. электромагнетизм. электромагнитные колебания и волны - student2.ru .

Подставив числовые значения, получим

раздел 4. электромагнетизм. электромагнитные колебания и волны - student2.ru Гн.

Пример 6. Определить ЭДС индукции, возникающую на концах крыльев турбореактивного самолета, движущегося горизонтально со скоростью 900 км/ч, если размах крыльев самолета 36.5 м, а вертикальная составляющая напряженности магнитного поля Земли 39.85 А/м.

Решение.ЭДС индукции можно определить по формуле

раздел 4. электромагнетизм. электромагнитные колебания и волны - student2.ru .

По условию задачи α = 90, поэтому

раздел 4. электромагнетизм. электромагнитные колебания и волны - student2.ru .

Индукцию магнитного поля найдем из условия

раздел 4. электромагнетизм. электромагнитные колебания и волны - student2.ru

где μ = 1 (для воздуха); μ0= 4π × 10–7 Гн/м.

Тогда получим

раздел 4. электромагнетизм. электромагнитные колебания и волны - student2.ru

Подставим числовые значения в системе СИ:

раздел 4. электромагнетизм. электромагнитные колебания и волны - student2.ru В.

Пример 7. Колебательный контур, состоящий из воздушного конденсатора с двумя пластинами по 100 см2 каждая и катушки с индуктивностью 1000 см, резонирует на волну длиной 10 м. Определить расстояние между пластинами конденсатора.

Решение.Расстояние между пластинами конденсатора можно найти из формулы емкости плоского конденсатора

раздел 4. электромагнетизм. электромагнитные колебания и волны - student2.ru

где ε – относительная диэлектрическая проницаемость среды, заполняющей конденсатор; S – площадь пластины конденсатора; d – расстояние между пластинами. Отсюда

раздел 4. электромагнетизм. электромагнитные колебания и волны - student2.ru .

Емкость найдем из формулы Томсона, определяющей период колебаний в электрическом контуре:

раздел 4. электромагнетизм. электромагнитные колебания и волны - student2.ru

где L – индуктивность катушки.

Отсюда

раздел 4. электромагнетизм. электромагнитные колебания и волны - student2.ru

Неизвестный в условии задачи период колебаний T можно определить, зная длину волны λ, на которую резонирует контур.

Длина волны связана с периодом соотношением

λ =cT,

где с – скорость света в вакууме.

Отсюда

T = λ / с.

Подставив выражение T в C, а затем выражение емкости C – в d, получим

раздел 4. электромагнетизм. электромагнитные колебания и волны - student2.ru

В системе СИ:

S = 100 см2 = 10–2 м2;

L = 1000 см =1000 × 10–9 Гн;

c = 3 × 108 м/с;

λ = 10 м;

ε = 1;

раздел 4. электромагнетизм. электромагнитные колебания и волны - student2.ru Ф/м.

Подставив числовые значения в d, получим

раздел 4. электромагнетизм. электромагнитные колебания и волны - student2.ru м.

Пример 8. В сеть переменного тока напряжением 110 В включены последовательно конденсатор емкостью 5·10–5 Ф, а также катушка с индуктивностью 200 мГн и активным сопротивлением 4 Ом.

Определить:

а) эффективную силу тока в цепи, если частота переменного тока 100 Гц;

б) частоту переменного тока, при которой в данном контуре наступит резонанс напряжений;

в) силу тока в цепи и напряжение на зажимах катушки и на пластинах конденсатора при наступлении резонанса напряжений.

Решение.а)Сила тока в цепи, содержащей индуктивность, емкость и активное сопротивление, определяется по формуле

раздел 4. электромагнетизм. электромагнитные колебания и волны - student2.ru (1)

где Uэф – эффективное напряжение переменного тока; раздел 4. электромагнетизм. электромагнитные колебания и волны - student2.ru – полное сопротивление; R – активное сопротивление цепи; раздел 4. электромагнетизм. электромагнитные колебания и волны - student2.ru – общее реактивное сопротивление; ω = 2πν – круговая частота переменного тока; ωL – реактивное индуктивное сопротивление;
раздел 4. электромагнетизм. электромагнитные колебания и волны - student2.ru – реактивное емкостное сопротивление.

Подставив в (1) числовые значения величин, получим

раздел 4. электромагнетизм. электромагнитные колебания и волны - student2.ru А.

б) Резонанс напряжений наступает при условии равенства частоты переменного тока и частоты собственных колебаний контура:

раздел 4. электромагнетизм. электромагнитные колебания и волны - student2.ru (2)

Подставив в (2) числовые значения L и C , получим

раздел 4. электромагнетизм. электромагнитные колебания и волны - student2.ru Гц.

в) При резонансе емкостное и индуктивное сопротивления равны между собой, а общее реактивное сопротивление равно нулю, т. е.

раздел 4. электромагнетизм. электромагнитные колебания и волны - student2.ru

Следовательно, полное сопротивление цепи при резонансе

раздел 4. электромагнетизм. электромагнитные колебания и волны - student2.ru

Сила тока при резонансе

раздел 4. электромагнетизм. электромагнитные колебания и волны - student2.ru А.

Напряжение UL на зажимах катушки и напряжение UC на пластинах конденсатора в момент наступления резонанса равны, так как в этот момент равны реактивные сопротивления катушки и конденсатора

раздел 4. электромагнетизм. электромагнитные колебания и волны - student2.ru

В численном выражении

раздел 4. электромагнетизм. электромагнитные колебания и волны - student2.ru В.

Наши рекомендации