Наименьшее общее кратное нескольких натуральных чисел

Признаки делимости чисел

Ключевые слова:натуральное число, делимость чисел, признаки делимости

  • Если каждое слагаемое делится на некоторое число, то и сумма делится на это число.
  • Если в произведении хотя бы один из множителей делится на некоторое число, то и произведение делится на это число.
  • Натуральное число делится на 2 тогда и только тогда, когда последняя цифра делится на 2.
  • Натуральное число делится на 5 тогда и только тогда , когда его последняя цифра либо 0, либо 5.
  • Натуральное число делится на 10 тогда и только тогда , когда его последняя цифра 0.
  • Натуральное число, содержащее не менее трех цифр, делится на 4 тогда и только тогда , когда делится на 4 двузначное число, образованное последними двумя цифрами заданного числа.
  • Натуральное число делится на 3 тогда и только тогда, когда сумма его цифр делится на 3.
  • Натуральное число делится на 9 тогда и только тогда, когда сумма его цифр делится на 9.

Наименьшее общее кратное нескольких натуральных чисел - student2.ru

Основная теорема арифметики.Любое составное натуральное число можно представить единственным образом в виде произведения простых чисел.

Например, 12=2 Наименьшее общее кратное нескольких натуральных чисел - student2.ru 2 Наименьшее общее кратное нескольких натуральных чисел - student2.ru 3 . Можно сказать, что число 12 разложено на простые множители.

Пример: Разложить на простые множители число 270

Решение:
 
270=2 Наименьшее общее кратное нескольких натуральных чисел - student2.ru 3 Наименьшее общее кратное нескольких натуральных чисел - student2.ru 3 Наименьшее общее кратное нескольких натуральных чисел - student2.ru 3 Наименьшее общее кратное нескольких натуральных чисел - student2.ru 5=2 Наименьшее общее кратное нескольких натуральных чисел - student2.ru 33 Наименьшее общее кратное нескольких натуральных чисел - student2.ru 5

Теорема. Если n составное число, то среди его простых делителей есть хотя бы один делитель p такой, что p2 Наименьшее общее кратное нескольких натуральных чисел - student2.ru n

Наибольший общий делитель нескольких натуральных чисел

Пусть даны числа 48 и 60. Выпишем все делители числа 48: 1, 2, 3, 4, 6, 8, 12, 16, 24, 48. Также выпишем все делители числа 60: 1, 2, 3, 4, 5,6, 10, 12, 15, 20, 30, 60. Среди выписанных чисел есть одинаковые: 1, 2, 3, 4, 6, 12. Все эти числа назывыаются общими делитьелями чисел 48 и 60, наибольшее среди них число 12 называется наибольшим общим делителем.

Замечание.Для того чтобы выписать все делители, надо узнать сколько их всего будет у даного числа. Для этого надо разложить число 48 на простые множители: 48=24 Наименьшее общее кратное нескольких натуральных чисел - student2.ru 3 . Число делителей числа 48: Наименьшее общее кратное нескольких натуральных чисел - student2.ru 4+1 Наименьшее общее кратное нескольких натуральных чисел - student2.ru Наименьшее общее кратное нескольких натуральных чисел - student2.ru Наименьшее общее кратное нескольких натуральных чисел - student2.ru 1+1 Наименьшее общее кратное нескольких натуральных чисел - student2.ru =5 Наименьшее общее кратное нескольких натуральных чисел - student2.ru 2=10 . Т.е. степень числа 2 плюс 1 умножить на степень числа 3 плюс 1.

Для любых заданных натуральных чисел a и bможно найти наибольший общий делитель. Он обозначается HOD(a,b) и читается: "HOD от a и b" . Например, HOD(a,b ) = HOD(48,60) = 12.

Взаимно простие числа. Если числа a и b таковы, что HOD(a,b) = 1, то такие числа называют зваимно простые.

Пример: Числа 26 и 35 являются взаимно простыми, хотя сами они составные. Так как 26=2 Наименьшее общее кратное нескольких натуральных чисел - student2.ru 13 и 35=5 Наименьшее общее кратное нескольких натуральных чисел - student2.ru 7 , то HOD(26,35) = 1.

Чтобы найти наибольший общий делитель нескольких чисел, надо разложть их на простые множители, найти общие простые множители и вычислить произведение общих простых множителей, взяв каждый из них с наименьшим, из имеющихся, показателем.

Пример: Найти HOD(56,84,96)

Решение:

56=2 Наименьшее общее кратное нескольких натуральных чисел - student2.ru 2 Наименьшее общее кратное нескольких натуральных чисел - student2.ru 2 Наименьшее общее кратное нескольких натуральных чисел - student2.ru 7=23 Наименьшее общее кратное нескольких натуральных чисел - student2.ru 7

96=2 Наименьшее общее кратное нескольких натуральных чисел - student2.ru 2 Наименьшее общее кратное нескольких натуральных чисел - student2.ru 2 Наименьшее общее кратное нескольких натуральных чисел - student2.ru 2 Наименьшее общее кратное нескольких натуральных чисел - student2.ru 2 Наименьшее общее кратное нескольких натуральных чисел - student2.ru 3=25 Наименьшее общее кратное нескольких натуральных чисел - student2.ru 3

84=2 Наименьшее общее кратное нескольких натуральных чисел - student2.ru 2 Наименьшее общее кратное нескольких натуральных чисел - student2.ru 3 Наименьшее общее кратное нескольких натуральных чисел - student2.ru 7=22 Наименьшее общее кратное нескольких натуральных чисел - student2.ru 3 Наименьшее общее кратное нескольких натуральных чисел - student2.ru 7

и тогда HOD(56,84,96) = 22 = 4

Наименьшее общее кратное нескольких натуральных чисел

Пусть даны числа 14 и 16. Выпишем все числа, кратные числа 12: 12, 24, 36, 48, 60, 72, 84,96, 108, 120. Также выпишем все числа, кратные числа 16: 16, 32, 48, 64, 80, 96, 112, 128. Среди выписанных чисел есть одинаковые: 48 и 96. Все эти числа назывыаются общими кратнымичисел 14 и 12, наименьшее среди них число 48 называется наименьшим общим кратнымчисел 14 и 12 .

Для любых заданных натуральных чисел a и bможно найти наименьшее общее кратное. Он обозначается HOK(a,b) и читается: "HOK от a и b" . Например, HOK(a,b ) = HOK(14,12) = 48.

Замечание. Любое общее кратное чисел a и bделится на HOK(a,b ).

Чтобы найти наименьшее общее кратное нескольких чисел, надо разложть их на простые множители, и вычислить произведение всех простых множителей, взяв каждый из них с наибольшим, из имеющихся, показателем степени.

Пример: Найти HOK(56,84,96)

Решение:56=2 Наименьшее общее кратное нескольких натуральных чисел - student2.ru 2 Наименьшее общее кратное нескольких натуральных чисел - student2.ru 2 Наименьшее общее кратное нескольких натуральных чисел - student2.ru 7=23 Наименьшее общее кратное нескольких натуральных чисел - student2.ru 7

96=2 Наименьшее общее кратное нескольких натуральных чисел - student2.ru 2 Наименьшее общее кратное нескольких натуральных чисел - student2.ru 2 Наименьшее общее кратное нескольких натуральных чисел - student2.ru 2 Наименьшее общее кратное нескольких натуральных чисел - student2.ru 2 Наименьшее общее кратное нескольких натуральных чисел - student2.ru 3=25 Наименьшее общее кратное нескольких натуральных чисел - student2.ru 7

84=2 Наименьшее общее кратное нескольких натуральных чисел - student2.ru 2 Наименьшее общее кратное нескольких натуральных чисел - student2.ru 3 Наименьшее общее кратное нескольких натуральных чисел - student2.ru 7=22 Наименьшее общее кратное нескольких натуральных чисел - student2.ru 3 Наименьшее общее кратное нескольких натуральных чисел - student2.ru 7

и тогда HOK(56,84,96) = 25 Наименьшее общее кратное нескольких натуральных чисел - student2.ru 3 Наименьшее общее кратное нескольких натуральных чисел - student2.ru 7 = 672

Теорема.Для любых натуральных чисел a и bсправедливо равенство HOD(a Наименьшее общее кратное нескольких натуральных чисел - student2.ru b) Наименьшее общее кратное нескольких натуральных чисел - student2.ru HOK(a Наименьшее общее кратное нескольких натуральных чисел - student2.ru b)=ab . Если числа a и bвзаимно простые, т.е.HOD(a,b) = 1, то HOK(a,b) = ab.

Наименьшее общее кратное двух взаимно простых чисел равно произведению этих чисел.

Дроби

Ключевые слова: дробь, числитель, знаменатель, смешанное число, приведение к общему знаменателю, сложение, вычитание, умножение и деление дробей, правильная и неправильная дробь

Определение: Выражение вида ba или a : b, где а и b целые числа, b Наименьшее общее кратное нескольких натуральных чисел - student2.ru =0 , называется дробью

  • Число a называется числителем дроби. Число b называется знаменателем дроби
  • Если a < b, то выражение ba правильная дробь
  • Если a > b , то выражение ba неправильная дробь. Из любой неправильной дроби можно выделить целую часть и дробную часть. Примеры: 67=161, 518=353

Основное свойство дроби: Две дроби ba и cd называются равными если a Наименьшее общее кратное нескольких натуральных чисел - student2.ru d=b Наименьшее общее кратное нескольких натуральных чисел - student2.ru c .

Действия над дробями (ba и cd):

  • ba=b Наименьшее общее кратное нескольких натуральных чисел - student2.ru ka Наименьшее общее кратное нескольких натуральных чисел - student2.ru k - Дробь не изменится, если числитель и знаменатель дроби умножить на одно и то же число
  • Если b = d, то ba Наименьшее общее кратное нескольких натуральных чисел - student2.ru cd=ba Наименьшее общее кратное нескольких натуральных чисел - student2.ru c
  • Если b Наименьшее общее кратное нескольких натуральных чисел - student2.ru =d , то дроби нужно привести к общему знаменателю: ba Наименьшее общее кратное нескольких натуральных чисел - student2.ru cd=bdad Наименьшее общее кратное нескольких натуральных чисел - student2.ru cb. Общим знаменателем будет НОК (b, d)
  • Если k целое число, то k Наименьшее общее кратное нескольких натуральных чисел - student2.ru ba=bk Наименьшее общее кратное нескольких натуральных чисел - student2.ru a или ba:k=ab Наименьшее общее кратное нескольких натуральных чисел - student2.ru k
  • Две дроби можно умножать ba Наименьшее общее кратное нескольких натуральных чисел - student2.ru cd=a Наименьшее общее кратное нескольких натуральных чисел - student2.ru cb Наименьшее общее кратное нескольких натуральных чисел - student2.ru d или делить ba:cd=b Наименьшее общее кратное нескольких натуральных чисел - student2.ru ca Наименьшее общее кратное нескольких натуральных чисел - student2.ru d

Операции над числами

Свойства сложения:

a + b = b + a - переместительное свойство

(a + b) +c = a + (b + c) - сочетательное свойство

a + 0 = a - свойство нуля

a + (-a) = 0 - сумма противоположных чисел

Свойства вычитания:

a - (b + c) = a - b - c вычитание суммы чисел от числа

(a + b) - c = (a - c) + b = a + (b - c) - вычитание числа от суммы

a - 0 = a - свойство нуля

0 - a = -a - свойство нуля

Свойства умножения:

a· b = b· a - переместительное свойство

(a · b)· c = a· (b · c) -сочетательное свойство

(a - b)· c = a · c - b · c - распределительное свойство

(a + b)· c = a · c + b · c - распределительное свойство

a · 1 = a - свойство единицы

a · 0 = 0 - свойство нуля

a Наименьшее общее кратное нескольких натуральных чисел - student2.ru a1=1 Наименьшее общее кратное нескольких натуральных чисел - student2.ru a Наименьшее общее кратное нескольких натуральных чисел - student2.ru =0 - свойство обратных чисел

Свойства деления:

(a · b) : c = a · (b : c) = (a : c) · b - деления произведения на число

(a + b) : c = a : c + b : c - деление суммы на число

(a - b) : c = a : c - b : c - деление разности на число

a : (b ·c) = (a: b) :c = (a : c) : b - деление числа на произведение

a : 1 = a; 0 : a = 0; a : a = 1, a Наименьшее общее кратное нескольких натуральных чисел - student2.ru =0- свойство единицы и нуля

Процент. Сложный процент

Ключевые слова:процент, сложный процент

Процентом называется сотая часть от числа, т.е. 1%А = 0,01А

1% = 0,01, 2% = 0,02, 45% = 0,45, 350% = 3,5. Часто встречающиеся проценты: 5% = 0,05 = 120, 10% = 0,1 = 110, 20% = 0,2 = 51, 25% = 0,25 = 41, 50% = 0,5 = 21, 75% = 0,75 =43

Основные типы задач.

Наши рекомендации