Типы моделей. Спецификации моделей
Предмет эконометрики. Методология эконометрического исследования.
Эконометрика – это наука, которая даёт количественное выражение взаимосвязей экономических явлений и процессов с помощью математических и статистических методов и моделей.Она основана на 3 науках: экономической теории, статистике и математике.
Основным предметом исследования эконометрики являются массовые экономические явления и процессы.
Эконометрика через математические и статистические методы анализирует экономические закономерности, доказанные экономической теорией.
Принципы эконометрики.
1. принцип правильной постановки проблемы;
2. принцип системной направленности эконометрических расчетов;
3. принцип учета рыночной неопределенности;
4. принцип улучшения имеющихся альтернатив и поиска новых.
Основные эконометрические методы.
1. сводка и группировка информации;
Статистическая сводка - это научно организованная обработка материалов наблюдения, включающая в себя систематизацию, группировку данных, составление таблиц, подсчет итогов, расчет производных показателей (средних, относительных величин). Статистическая группировка - это процесс образования однородных групп на основе расчленения статистической совокупности на части или объединения изучаемых единиц в частные совокупности по существенным для них признакам.
2. вариационный и дисперсионный анализ;
Дисперсия признака - это средний квадрат отклонений вариантов от их средней величины.
В эконометрических расчетах, как правило, используют общую, межгрупповую и внутригрупповую дисперсии. При этом общая дисперсия характеризует вариацию признака в статистической совокупности в результате влияния всех факторов. Межгрупповая дисперсия показывает размер отклонения групповых средних от общей средней, то есть характеризует влияние фактора, положенного в основание группировки. Внутригрупповая (остаточная) дисперсия характеризует вариацию признака в середине каждой группы статистической группировки. В эконометрических расчетах используется среднее квадратическое отклонение - обобщающая характеристика размеров вариации признака в совокупности. Оно равно корню квадратному из дисперсии. Для осуществления сравнений колеблемости одного и того же признака в нескольких совокупностях используется относительный показатель вариации — коэффициент вариации.
2. регрессионный и корреляционный анализ;
Применение метода наименьших, квадратов (МНК) позволяет получить достаточно точные теоретические значения модели однофакторной регрессии и соответственно ее графическое изображение (термин "регрессия" - движение назад, возвращение в прежнее состояние, - был введен Фрэнсисом Галтоном в конце XIX века при анализе зависимости между ростом родителей и ростом детей; в любом случае средний рост детей - и у низких, и у высоких родителей -стремится (возвращается) к среднему росту людей в данном регионе).
3. статистические уравнения зависимости;
4. статистические индексы и др.
Статистические индексы могут быть использованы в качестве меры изменения количества независимо от изменения качественного признака (цены, себестоимости, производительности труда и т.п.), а также для характеристики качественного признака независимо от изменения количества (объема продукции в натуральном выражении, численности работников и т.п.).
Типы моделей. Спецификации моделей.
Главным инструментом эконометрического исследования является модель. Выделяют три основных класса эконометрических моделей:
1) модель временных рядов;
2) модели регрессии с одним уравнением;
3) системы одновременных уравнений.
Моделью временных рядов называется зависимость результативной переменной от переменной времени или переменных, относящихся к другим моментам времени.
К моделям временных рядов, характеризующих зависимость результативной переменной от времени, относятся:
а) модель зависимости результативной переменной от трендовой компоненты или модель тренда;
б) модель зависимости результативной переменной от сезонной компоненты или модель сезонности;
в) модель зависимости результативной переменной от трендовой и сезонной компонент или модель тренда и сезонности.
К моделям временных рядов, характеризующих зависимость результативной переменной от переменных, датированных другими моментами времени, относятся:
а) модели с распределённым лагом, объясняющие вариацию результативной переменной в зависимости от предыдущих значений факторных переменных;
б) модели авторегрессии, объясняющие вариацию результативной переменной в зависимости от предыдущих значений результативных переменных;
в) модели ожидания, объясняющие вариацию результативной переменной в зависимости от будущих значений факторных или результативных переменных.
Кроме рассмотренной классификации, модели временных рядов делятся на модели, построенные по стационарным и нестационарным временным рядам.
Стационарным временным рядом называется временной ряд, который характеризуется постоянными во времени средней, дисперсией и автокорреляцией, т. е. данный временной ряд не содержит трендовой и сезонной компонент.
Нестационарным временным рядом называется временной ряд, который содержит трендовую и сезонную компоненты.
Определение. Моделью регрессии с одним уравнением называется зависимость результативной переменной, обозначаемой как у, от факторных (независимых) переменных, обозначаемых как х1,х2,…,хn. Данную зависимость можно представить в виде функции регрессии или модели регрессии:
y=f(x,β)=f(х1,х2,…,хn, β1…βk)
где β1…βk – параметры модели регрессии.
Можно выделить две основных классификации моделей регрессии::
а) классификация моделей регрессии на парные и множественные регрессии в зависимости от числа факторных переменных;
б) классификация моделей регрессии на линейные и нелинейные регрессии в зависимости от вида функции f(x,β).
В качестве примеров моделей регрессии с одним уравнением можно привести следующие модели:
а) производственная функция вида Q=f(L,K), выражающая зависимость объёма производства определённого товара (Q) от производственных факторов – от затрат капитала (К) и затрат труда (L);
б) функция цены Р=f(Q,Pk), характеризующая зависимость цены определённого товара (Р) от объема поставки (Q) и от цен конкурирующих товаров (Pk);
в) функция спроса Qd=f(P,Pk,I), характеризующая зависимость величины спроса на определённый товар (Р) от цены данного товара (Р), от цен товаров-конкурентов (Pk) и от реальных доходов потребителей (I).
Системой одновременных уравнений называется модель, которая описывается системами взаимозависимых регрессионных уравнений.
Системы одновременных уравнений могут включать в себя тождества и регрессионные уравнения, в каждое из которых могут входить не только факторные переменные, но и результативные переменные из других уравнений системы.
Регрессионные уравнения, входящие в систему одновременных уравнений, называются поведенческими уравнениями. В поведенческих уравнениях значения параметров являются неизвестными и подлежат оцениванию
Основное отличие тождеств от регрессионных уравнений заключается в том, что их вид и значения параметров известны заранее.
Примером системы одновременных уравнений является модель спроса и предложения, в которую входит три уравнения:
а) уравнение предложения: =а0+а1*Рt+a2*Pt-1;
б) уравнение спроса: =b0+b1* Рt+b2*It;
в) тождество равновесия: QSt = Qdt,
где QSt – предложение товара в момент времени t;
Qdt – спрос на товар в момент времени t;
Рt – цена товара в момент времени t;
Pt-1 – цена товара в предшествующий момент времени (t-1);
It– доход потребителей в момент времени.
В модели спроса и предложения выражаются две результативные переменные:
а) Qt– объём спроса, равный объёму предложения в момент времени t;
б) Pt– цена товара в момент времени t.