Коэффициент детерминации в регрессионной модели
Коэффициент детерминации (R2)— это доля дисперсии отклонений зависимой переменной от её среднего значения, объясняемая рассматриваемой моделью связи. Модель связи обычно задается как явная функция от объясняющих переменных.
где yi — наблюдаемое значение зависимой переменной, а fi — значение зависимой переменной предсказанное по уравнению регрессии -среднее арифметическое зависимой переменной. Коэффициент детерминации является случайной переменной. Он характеризует долю результативного признака у, объясняемую регрессией, в общей дисперсии результативного признака: 0≤ R2≤1. причем если R2= 1 то переменная yt полностью объясняется регрессором xt. В множественной регрессионной модели добавление дополнительных регрессоров увеличивает значение коэффициента детерминации, поэтому его корректируют с учетом числа независимых переменных:
Ковариация, коэффициент корреляции и индекс детерминации.
Наряду с функцией регрессии в эконометрике существенно используются числовые характеристики взаимосвязи пары случайных переменных (x, y). Эти характеристики именуются ковариацией и коэффициентом корреляции. Ковариацией называется константа , определенная по правилу
Свойства математического ожидания позволяют представить и так: , где
Оценкой ковариации служит величина , именуемая выборочной ковариацией.
Так же размерность равна произведению значений размерности случайных переменных x и y. Часто удобно использовать безразмерную ковариацию
Константа именуется еще коэффициентом корреляции. Всегда .
В качестве меры, объясняющей способности регрессора в модели (1)
может служить в пределах обучающей выборки ( величина .
Она именуется коэффициентом детерминации модели и равна доле эмпирической дисперсии переменной y, которая в рамках обучающей выборки ( объясняется в модели (1) ее регрессором x. Всегда .
Количественные характеристики взаимосвязи пары случайных переменных
Математическое ожидание (среднее значение), дисперсия и среднее квадратич.отклонение, ковариация и коэф-нт корреляции.
Матем. ожид. дискретн.
случ. перем. назыв. вел-на:M(x)=сумма(Pi*xi),где M(x)-матем ожид. СДП х, Pi-вероятность появл. в опытах знач-я хi,n-кол-во допустимых значений ДСВеличины. Матем. ожид-средневзвеш. значение ДСП,где в качестве веса использ значение вероятности.
Дисперсией дискретн случ перемен назыв. в-на:D2(x)=сумма(xi-M(x))2*P(xi), где D2(x)-дисперсия случ.перем.х. Дисперсия случ. вел-ны выступает в качестве характеристики разброса возможных ее значений. Положит. корень из дисперсии назыв средним квадратич.отклонением или стандартным отклонением,или стандартной ошибкой.
Матем.ожидание непрерывн. случ. перемен Хс законом распределения рх(t) назыв. в-на:М(х)=интеграл от – бесконечности до + бесконечности tpx(t)dt, что назыв. перв начальн.моментом ф-ции px(t).Через рез-ты наблюдений матем.ожид-е вычисл.:M(x)=(1/n)сумма(xi).
Дисперсией непрерывн.случ. перемен. Хс функцией плотности вероятности px(t) назыв. выраж-е: D2(x)= интеграл от – бесконечности до + бесконечности(t-M(x))2px(t)dt,что назыв вторым центр моментом ф-ции px(t).В общем случае дисперсия случ.перем.: D2(x)=М(х-М(х))2=М(х2)-М2(х).
Ковариацией двух случ.перем. ХиУ:COV(x,y)=M((x-M(x))(y-M(y))).Значение ковариации отраж.наличие связи между 2 случ.перем.Если COV(x,y)>0,связь между XиY положит.,если <0-отрицат., если=0,X и Y-независ.перемен.Область возможн.знач. ковариации-вся числовая ось. Недостатки устраняются путем деления знач ковариации на знач стандартн отклонений перемен,что назыв коэф-нтом корреляции.это безразмерн вел-на,предел от -1 до 1 включительно.Ф-ла:р(х,у)=COV(x,y)/(D(x)*D(y)).