Производная по направлению.
Пусть функция u = f (x, y, z) непрерывна в некоторой области D и имеет в этой области непрерывные частные производные. Выберем в рассматриваемой области точку M(x,y,z) и проведем из нее вектор S, направляющие косинусы которого cosα, cosβ, cosγ. На векторе S на расстоянии Δs от его начала найдем точку М1(х+Δх, у+Δу, z+Δz), где
Представим полное приращение функции f в виде:
где
После деления на Δs получаем:
.
Поскольку предыдущее равенство можно переписать в виде:
(1)
Градиент.
ОпределениеПредел отношения при называется производной от функции u = f (x, y, z) по направлению вектора Sи обозначается .
При этом из (1) получаем:
(2)
Замечание 1. Частные производные являются частным случаем производной по направлению. Например, при получаем:
.
Замечание 2. Выше определялся геометрический смысл частных производных функции двух переменных как угловых коэффициентов касательных к линиям пересечения поверхности, являющейся графиком функции, с плоскостями х = х0 и у = у0. Аналогичным образом можно рассматривать производную этой функции по направлению l в точке М(х0 , у0) как угловой коэффициент линии пересечения данной поверхности и плоскости, проходящей через точку М параллельно оси Oz и прямой l.
ОпределениеВектор, координатами которого в каждой точке некоторой области являются частные производные функции u = f (x, y, z) в этой точке, называется градиентомфункции u = f (x, y, z).
Обозначение: grad u = .
Свойства градиента.
1. Производная по направлению некоторого вектора Sравняется проекции вектора grad u на вектор S. Доказательство. Единичный вектор направления S имеет вид eS ={cosα, cosβ, cosγ}, поэтому правая часть формулы (4.7) представляет собой скалярное произведение векторов grad u и es, то есть указанную проекцию.
2. Производная в данной точке по направлению вектора S имеет наибольшее значение, равное |grad u |, если это направление совпадает с направлением градиента. Доказательство. Обозначим угол между векторами Sи grad u через φ. Тогда из свойства 1 следует, что |grad u |∙cosφ, (4.8) следовательно, ее наибольшее значение достигается при φ=0 и равно |grad u |.
3. Производная по направлению вектора, перпендикулярного к вектору grad u , равна нулю.
Доказательство. В этом случае в формуле (4.8)
4. Если z = f (x,y) – функция двух переменных, то grad f = направлен перпендикулярно к линии уровня f (x,y) = c, проходящей через данную точку.
Экстремумы функций нескольких переменных. Необходимое условие экстремума. Достаточное условие экстремума. Условный экстремум. Метод множителей Лагранжа. Нахождение наибольших и наименьших значений.
Определение 1. Точка М0 (х0 , у0 ) называется точкой максимума функции z = f (x, y), если f (xo , yo) > f (x, y) для всех точек (х, у) из некоторой окрестности точки М0.
Определение 2. Точка М0 (х0 , у0 ) называется точкой минимума функции z = f (x, y), если f (xo , yo) < f (x, y) для всех точек (х, у) из некоторой окрестности точки М0.
Замечание 1. Точки максимума и минимума называются точками экстремумафункции нескольких переменных.
Замечание 2. Аналогичным образом определяется точка экстремума для функции от любого количества переменных.
Теорема 1 (необходимые условия экстремума). Если М0 (х0 , у0 ) – точка экстремума функции z = f (x, y), то в этой точке частные производные первого порядка данной функции равны нулю или не существуют.
Доказательство.
Зафиксируем значение переменной у, считая у = у0. Тогда функция f (x, y0) будет функцией одной переменной х, для которой х = х0 является точкой экстремума. Следовательно, по теореме Ферма или не существует. Аналогично доказывается такое же утверждение для .
Определение 3.Точки, принадлежащие области определения функции нескольких переменных, в которых частные производные функции равны нулю или не существуют, называются стационарными точками этой функции.
Замечание. Таким образом, экстремум может достигаться только в стационарных точках, но не обязательно он наблюдается в каждой из них.
Примеры.
- Найдем стационарную точку функции z = x² + y². Для этого решим систему уравнений откуда х0 = у0 = 0. Очевидно, что в этой точке функция имеет минимум, так как при х = у = 0 z = 0, а при остальных значениях аргументов z > 0.
- Для функции z = xy стационарной точкой тоже является (0, 0), но экстремум в этой точке не достигается ( z (0, 0) = 0, а в окрестности стационарной точки функция принимает как положительные, так и отрицательные значения).
Теорема 2 (достаточные условия экстремума). Пусть в некоторой окрестности точки М0 (х0 , у0 ) , являющейся стационарной точкой функции z = f (x, y), эта функция имеет непрерывные частные производные до 3-го порядка включительно. Обозначим Тогда:
1) f (x, y) имеет в точке М0 максимум, если AC – B² > 0, A < 0;
2) f (x, y) имеет в точке М0 минимум, если AC – B² > 0, A > 0;
3) экстремум в критической точке отсутствует, если AC – B² < 0;
4) если AC – B² = 0, необходимо дополнительное исследование.
Пример. Найдем точки экстремума функции z = x² - 2xy + 2y² + 2x. Для поиска стационарных точек решим систему . Итак, стационарная точка (-2,-1). При этом А = 2, В = -2, С = 4. Тогда AC – B² = 4 > 0, следовательно, в стационарной точке достигается экстремум, а именно минимум (так как A > 0).
Условный экстремум.
Определение 4.Если аргументы функции f (x1 , x2 ,…, xn) связаны дополнительными условиями в виде m уравнений (m < n):
φ1 (х1, х2 ,…, хn) = 0, φ2 (х1, х2 ,…, хn) = 0, …, φm (х1, х2 ,…, хn) = 0, (1)
где функции φi имеют непрерывные частные производные, то уравнения (1) называются уравнениями связи.
Определение 5.Экстремум функции f (x1 , x2 ,…, xn) при выполнении условий (1) называется условным экстремумом.
Замечание. Можно предложить следующее геометрическое истолкование условного экстремума функции двух переменных: пусть аргументы функции f(x,y) связаны уравнением φ(х,у) = 0, задающим некоторую кривую в плоскости Оху. Восставив из каждой точки этой кривой перпендикуляры к плоскости Оху до пересечения с поверхностью z = f (x,y), получим пространственную кривую, лежащую на поверхности над кривой φ(х,у) = 0. Задача состоит в поиске точек экстремума полученной кривой, которые, разумеется, в общем случае не совпадают с точками безусловного экстремума функции f(x,y).
Определим необходимые условия условного экстремума для функции двух переменных, введя предварительно следующее определение:
Определение 6.Функция L (x1 , x2 ,…, xn) = f (x1 , x2 ,…, xn) + λ1φ1 (x1 , x2 ,…, xn) +
+ λ2φ2 (x1 , x2 ,…, xn) +…+λmφm (x1 , x2 ,…, xn), (2)
где λi – некоторые постоянные, называется функцией Лагранжа, а числа λi – неопределенными множителями Лагранжа.
Теорема (необходимые условия условного экстремума). Условный экстремум функции z = f (x, y) при наличии уравнения связи φ (х, у) = 0 может достигаться только в стационарных точках функции Лагранжа L (x, y) = f (x, y) + λφ (x, y).
Доказательство. Уравнение связи задает неявную зависимость у от х, поэтому будем считать, что у есть функция от х: у = у(х). Тогда z есть сложная функция от х, и ее критические точки определяются условием: . (3)
Из уравнения связи следует, что . (4)
Умножим равенство (4) на некоторое число λ и сложим с (3). Получим:
, или .
Последнее равенство должно выполняться в стационарных точках, откуда следует:
(5)
Получена система трех уравнений относительно трех неизвестных: х, у и λ, причем первые два уравнения являются условиями стационарной точки функции Лагранжа. Исключая из системы (5) вспомогательное неизвестное λ, находим координаты точек, в которых исходная функция может иметь условный экстремум.
Замечание 1. Проверку наличия условного экстремума в найденной точке можно провести с помощью исследования частных производных второго порядка функции Лагранжа по аналогии с теоремой 2.
Замечание 2. Точки, в которых может достигаться условный экстремум функции f (x1 , x2 ,…, xn) при выполнении условий (1), можно определить как решения системы (6)
Пример. Найдем условный экстремум функции z = xy при условии х + у = 1. Составим функцию Лагранжа L(x, y) = xy + λ (x + y – 1). Система (6) при этом выглядит так:
, откуда -2λ=1, λ=-0,5, х = у = -λ = 0,5. При этом L (x, y) можно представить в виде L (x, y) = -0,5 (x – y)² + 0,5 ≤ 0,5, поэтому в найденной стационарной точке L (x, y) имеет максимум, а z = xy – условный максимум.