Будь-яка підмножина з т елементів даної множини, яка містить n елементів, називається комбінацією з n елементів по т елементів
Число комбінацій з n елементів по т позначають символом . Наприклад: = 3.
З чотирьох елементів множини {a, b, c, d} можна утворити 6 комбінацій по 2 елементи: {а, b}, {а, с}, {а, d}, {b, с}, {с, а}, {b. d}; 3 комбінації по 3 елементи: {а, b, с}, {а, b, d}, {b, с, d}.
Таким чином, = 6, = 3.
Домовилися вважати, що
= 1, =n , = 1.
Виведемо формулу для знаходження значень , для цього порівняємо числа і при одних і тих же значеннях т і п.
Кожну m-елементну комбінацію можна впорядкувати Рm способами. У результаті з однієї комбінації утворюється розміщень (упорядкованих підмножин) з тих самих елементів. Отже, число m-елементних комбінацій у Рm разів менше за число розміщень з тих самих елементів. Тобто = • , звідси
Число комбінацій з n елементів по т дорівнює дробу, чисельник якого е добуток т послідовних натуральних чисел, найбільше з яких n, а знаменник дробу — добуток т послідовних натуральних чисел.
Враховуючи, що можна одержати . Отже,
Приклад Обчислити a) ; б) .
a) ; б)
Задача. Скількома способами з 25 учнів можна вибрати 3 чергових.