Лабораторная работа № 7

ИЗУЧЕНИЕ ЭЛЕКТРИЧЕСКИХ ПРОЦЕССОВ В ЦЕПИ С ГАЗОРАЗРЯДНЫМ ДИОДОМ

ЦЕЛЬ РАБОТЫ

Изучение релаксационных процессов в электрических цепях с конденсаторами и газоразрядным диодом. Ознакомление принципа работы релаксационного лампового генератора пилообразных колебаний.

ТЕОРЕТИЧЕСКИЕ ОСНОВЫ РАБОТЫ

Если электрическая цепь включает в себя источник постоянного тока и конденсатор, то в такой цепи возможно наблюдение процессов заряда и разряда конденсатора. Принципиальная схема показана на рис. 1.

Эти процессы детально были рассмотрены в лабораторной работе №6, поэтому ограничимся лишь некоторыми замечаниями.

Лабораторная работа № 7 - student2.ru Предположим ,что мгновенное значения тока одно и то же во всех поперечных сечениях провода, соединяющего обкладки конденсатора, а мгновенное электрическое поле такое же, как электростатическое при тех же зарядах на обкладках конденсатора. Токи и поля, удовлетворяющие этим условиям, называются квазистати-ческими или квазистационарными.

Рис. 1

Условие квазистационарности выполняется в том случае, если

Лабораторная работа № 7 - student2.ru ,

где L – длина проводника, соединяющего обкладки конденсатора;

с – скорость света в вакууме;

t – характерное время протекания процессов в электрической цепи.

Приведем зависимость напряжения на конденсаторе от времени, полученную в лаб. работе №6, в 2-х случаях :

при заряде конденсатора

Лабораторная работа № 7 - student2.ru , (1)

при разряде конденсатора

Лабораторная работа № 7 - student2.ru , (2)

где e – напряжение на конденсаторе в начальный момент времени t=0 (напряжение источника ЭДС);

t=RC – время релаксации.

Лабораторная работа № 7 - student2.ru Эти зависимости представлены на рис. 2.

Лабораторная работа № 7 - student2.ru

Рис. 2

Рассмотрим релаксационные колебания в цепи, содержащей конденсатор и неоновую лампу.

На рис. 3 представлена схема генератора релаксационных колебаний, основанного на использовании RC-цепи.

Лабораторная работа № 7 - student2.ru Генератор работает следующим образом. Конденсатор емкости С, параллельно которому присоединена неоновая лампа НЛ, заряжается от источника ЭДС e через большое сопротивление R.

Рис. 3

 
  Лабораторная работа № 7 - student2.ru

Если бы неоновой лампы не было, то напряжение конденсатора UC увеличивалось бы с течением времени, согласно пунктирной кривой на рис. 4, которая описывается уравнением (1), и стремилось бы асимптотически к ЭДС источника e (U0).

Рис. 4

При наличии неоновой лампы происходит следующее. Когда напряжение UC достигает напряжения зажигания UЗ, в лампе возникает газовый разряд, и конденсатор начинает быстро разряжаться через лампу, поскольку сопротивление неоновой лампы RЛ при наличии разряда значительно меньше сопротивления R.

Когда UC уменьшается до значения напряжения гашения разряда UГ, разряд в лампе прекращается и конденсатор начинает опять заряжаться, а напряжение UC расти. Затем в определенный момент времени в лампе снова зажигается разряд и описанные процессы повторяются периодически.

График релаксационного процесса приведен на рис. 4.

Очевидно, что период колебаний Т определяется выражением

Т=Т12, (3)

где Т1 – время заряда, за которое напряжение на конденсаторе изменяется от UГ до UЗ;

Т2 – время разряда, за которое напряжение изменяется от UЗ до UГ.

Поскольку R>>RЛ, то Т1>>Т2, т.к. значения Т1 и Т2 в первом приближении пропорциональны постоянным времени цепей заряда t1=RC и разряда t2=RЛС, соответственно.

Следовательно, период процесса Т@Т1. Используя уравнение (1), можно получить выражение для периода Т:

Лабораторная работа № 7 - student2.ru . (4)

Роль переключателя, обеспечивающего попеременный заряд и разряд конденсатора, играет газоразрядный диод. Работа газоразрядных (ионных) ламп основана на явлении электрического разряда в газах. Конструктивно ионные лампы представляют собой систему из двух (или более) электродов, размещенных в герметизированном баллоне, заполненном каким-либо инертным газом, водородом или парами ртути.

В зависимости от вида разряда различают лампы с самостоятельным и несамостоятельным разрядами. Испускаемые катодом в результате эмиссии электроны ускоряются электрическим полем до потенциала ионизации. Столкновения электронов с молекулами газов приводят к ионизации молекул. Ускоренные полем положительные ионы бомбардируют катод, вызывая появление новой порции электронов. В том же направлении действует и фотоэффект, обусловленный свечением газового разряда в результате процесса рекомбинации. В баллоне лампы образуется газоразрядная плазма с большой концентрацией электронов и ионов, которые и являются носителями зарядов.

Минимальное значение напряжения между катодом и анодом, при котором происходит образование в лампе газоразрядной плазмы, носит название потенциала зажигания UЗ. Прекращение свечения лампы происходит при более низком напряжении, которое называется потенциалом гашения UГ.

Лабораторная работа № 7 - student2.ru Зависимость тока от напряжения для газоразрядной лампы не подчиняется закону Ома и характеризуется рядом особенностей при малых напряжениях (рис. 5). При напряжениях U<UЗ лампа не пропускает тока (не горит). Ток в лампе возникает только в том случае, когда напряжение между электродами лампы достигает напряжения зажигания UЗ. При этом величина тока скачком устанавливается равной I1, которая при дальнейшем увеличении напряжения U растет по закону, близкому к линейному. При уменьшении напряжения на горящей лампе до UЗ лампа еще не гаснет, и сила тока продолжает уменьшаться. Лам-па перестает пропускать ток лишь при напряжении гашения UГ, которое обычно существен-но ниже UЗ. Сила тока при этом скачком падает от значения I2 до нуля.

Рис. 5

Различие напряжений зажигания и гашения дает возможность использовать неоновую лампу для получения электрических колебаний “пилообразного типа”.

ОПИСАНИЕ ЭКСПЕРИМЕНТАЛЬНОЙ УСТАНОВКИ

Принципиальная схема установки показана на рис. 6.

 
  Лабораторная работа № 7 - student2.ru

Рис. 6

Схема состоит из источника постоянного тока ИП, неоновой лампы НЛ, универсального вольтметра V, с пределом измерений напряжения свыше 100 В. Для контроля колебаний,возникающих в цепи, применяется электронный осциллограф ЭО и громкоговоритель ГГ, включенный в цепь через усилитель УС.

Набор конденсаторов различных емкостей и сопротивлений позволяет формировать RC-цепи с разными временами релаксации. Переключатели К1 и К3 позволяют изменять значения R и С. Ключом К2 RC-цепочка подключается в цепь заряда.

ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

Упражнение 1. СНЯТИЕ ХАРАКТЕРИСТИКИ НЕОНОВОЙ ЛАМПЫ

На вольтметре В7-21 кнопки 1 и 5 установить в нажатом состоянии, кнопки 4 и 6 – в отжатом, установить предел измерений напряжения «200 В».

Переключатель К1 перевести в положение «измерение UЗАЖИГАНИЯ». Медленно передвигать регулятор напряжения R6 до тех пор, пока лампа не загорится. Зафиксировать напряжение зажигания UЗ и занести показания в таблицу 1. Определить напряжение гашения UГ при уменьшении напряжения (движение R6 в обратную сторону). Занести и эти показания в таблицу 1.

Таблица 1

 
  Лабораторная работа № 7 - student2.ru

№ п/п UЗ, В UГ, В

……

Указанные измерения UЗ и UГ провести не менее трех раз и вычислить средние значения.

Определить погрешности DUЗ и DUГ как абсолютные погрешности:

Лабораторная работа № 7 - student2.ru , Лабораторная работа № 7 - student2.ru .

После измерений перевести переключатель К1 в нейтральное положение.

Таблица 2

 
  Лабораторная работа № 7 - student2.ru

№ п/п U, B R, Moм С, мкФ Т=t10/10 ТРАСЧ

экс

Упражнение 2. ОПРЕДЕЛЕНИЕ ПЕРИОДА РЕЛАКСА-ЦИОННОГО ПРОЦЕССА С НЕОНОВОЙ ЛАМПОЙ (Случай большого периода колебаний)

Переключатель К1 перевести в положение «Релаксация». Установить потенциометром R6 максимальное напряжение. Измерить период колебаний Т при нескольких выбранных значениях R и С, отсчитывая по секундомеру время десяти вспышек неоновой лампы t10. Числовые значения R1,2 и С1–4 указаны на рис. 6. Варианты соединений взять из табл. 3 (выбрать переключателями К2, К3).

Рассчитать период Т по формуле (4) и занести в таблицу 2.

Таблица 3

 
  Лабораторная работа № 7 - student2.ru

Вариант 1 Вариант 2 Вариант 3 Вариант 4

К3, 2,2 М К3, 2,2 М К3, 4,4 М К3, 4,4 М

К2, 1 мкФ К2, 2 мкФ К2, 1 мкФ К2, 2 мкФ

Упражнение 3. ОПРЕДЕЛЕНИЕ ПЕРИОДА РЕЛАКСА-ЦИОННОГО ПРОЦЕССА С НЕОНОВОЙ ЛАМПОЙ (Случай малого периода колебаний)

Переключатель К1 остается в положении «Релаксация».

Числовые значения R и С устанавливаются переключателями К2 и К3. Их значения указаны в таблице 4.

Таблица 4

 
  Лабораторная работа № 7 - student2.ru

Вариант 1 Вариант 2 Вариант 3 Вариант 4

К3, 2,2 М К3, 2,2 М К3, 4,4 М К3, 4,4 М

К2, 1 нФ К2, 10 нФ К2, 1 нФ К2, 10 нФ

Так как параметр Т лежит в диапазоне 1¸30 мс, то измерение периода производится с помощью осциллографа. Звуковой сигнал, создаваемый громкоговорителем, дает представление о частоте следования импульсов (сила звука регулируется).

Определить длительность периода с помощью осциллографа и занести результаты в таблицу 2.

Оценить погрешности определенной экспериментально ТЭКС следующим образом

Лабораторная работа № 7 - student2.ru ,

где Dt – абсолютная погрешность измерений времени колебаний;

t – средняя длительность 10 колебаний.

Оценить величину относительной погрешности ТРАСЧ по приближенной формуле

Лабораторная работа № 7 - student2.ru ,

где t и Dt – постоянная времени заряда и ее абсолютная погрешность.

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Каким током заряжается конденсатор: переменным или постоянным?

2. Чему равна энергия заряженного конденсатора?

3. Вывести уравнение зарядки конденсатора.

4. Напишите закон Ома для полной цепи и для участка цепи.

5. Вывести уравнение разрядки конденсатора.

6. Почему время зарядки конденсатора больше времени разряда ТЗАР>>ТРАЗ ?

7. Изобразить и объяснить графики зависимости напряжения на конденсаторе во время его заряда и во время разряда.

8. Что такое периодический процесс? Является ли исследуемый процесс зарядки-разрядки конденсатора периодическим?

9. Что означают понятия «эмиссия» и «ионизация»?

10. Откуда в лампе , заполненной нейтральным инертным газом, появляются ионы и электроны?

11. От чего зависит концентрация электронов и ионов в лампе?

12. Что такое рекомбинация?

13. Что такое “самостоятельный” и “несамостоятельный” разряды?

14. Что такое электрическое квазистационарное поле?

15. Что такое плазма?

16. Пользуясь принципиальной схемой установки, объяснить ее работу.

17. Можно ли считать пилообразные колебания напряжения, возникающие в данной работе, периодическим процессом?

18. Что представляет собой генератор электрических колебаний?

19. Что такое газоразрядный диод? Его устройство и принцип действия.

20. Что является источником электронов в лампе?

21. Каким требованиям должен удовлетворять осциллограф, применяемый в экспериментальной установке?

22. Каковы функции вольтметра, применяемого в данной установке?

23. Какие выходные напряжения должен обеспечивать источник постоянного тока?

24. Какие типы конденсаторов могут применяться в данной установке?

25. Чем определяются номиналы емкостей конденсаторов, применяемых в схеме установки?

26. Объяснить, чем режим «измерения UЗ» отличается от режима «релаксации».

27. Какими условиями определяются величины напряжений зажигания и гашения? Равны ли они между собой?

28. Объясните ход зависимостей напряжения U(t), тока I(t) и I(U).

29. Почему количество вспышек, отсчитываемых во время измерений, берется равным десяти?

30. Как оценить погрешности измерений?

Наши рекомендации