Складання і дослідження канонічних рівнянь кривих другого порядку
Задача 43.1.Скласти рівняння еліпса, фокуси якого розташовані на осі абсцис симетрично щодо початку координат, якщо відомі:
1) –точка на еліпсі та
– мала піввісь;
2) – точка на еліпсі,
– ексцентриситет.
Розв’язання.
1) Підставимо в канонічне рівняння еліпса замість та
координати точки А, а також дане значення
. Одержимо рівняння:
.
Розв’яжемо його:
Отже, відповідь:
.
1) З умови задачі маємо:
, отже,
.
З другого боку, підставимо у канонічне рівняння координати точки А. Одержимо систему рівнянь:
.
Звідси
,
отже шукане рівняння має вигляд:
.
Задача 43.2. Скласти рівняння гіперболи, фокуси якої розташовані на осі абсцис симетрично щодо початку координат, якщо відомі:
1) – рівняння асимптот,
– відстань між вершинами;
2) – точки на гіперболі.